
Generic Security Service
for version 0.0.0, 30 May 2003

Simon Josefsson (bug-gss@josefsson.org)

mailto:bug-gss@josefsson.org

This manual is for Generic Security Service, last updated 30 May 2003, for Version 0.0.0.
Copyright c© 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 Supported Platforms . 1
1.4 Bug Reports . 3

2 Preparation . 4
2.1 Header . 4
2.2 Initialization . 4
2.3 Version Check. 4
2.4 Building the source . 5

3 Standard GSS API. 6
3.1 Credential Management . 6
3.2 Context-Level Routines . 7
3.3 Per-Message Routines . 12
3.4 Name Manipulation . 14
3.5 Miscellaneous Routines . 19

4 Extended GSS API . 23

5 Acknowledgements . 24

Appendix A Criticism of GSS 25

Concept Index . 26

Function and Data Index . 27

Chapter 1: Introduction 1

1 Introduction

GSS is an implementation of the Generic Security Service Application Program Interface
(GSS-API). GSS-API is used by network servers (e.g., IMAP, SMTP) to provide security
security services, e.g., authenticate clients against servers. GSS consists of a library and a
manual.

GSS is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

GSS is licensed under the GNU Public License.

1.1 Getting Started

This manual documents the GSS programming interface. All functions and data types
provided by the library are explained.

The reader is assumed to possess basic familiarity with GSS-API and network program-
ming in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

GSS might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License.

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallell.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

Chapter 1: Introduction 2

1.3 Supported Platforms

GSS has at some point in time been tested on the following platforms.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,
ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips-unknown-linux-gnu,
mipsel-unknown-linux-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. RedHat Linux 7.2
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

7. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

8. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

9. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

10. Mandrake Linux 9.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

11. IRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

12. AIX 4.3.2
IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

13. Microsoft Windows 2000 (Cygwin)
GCC 3.2, GNU make. i686-pc-cygwin.

14. HP-UX 11
HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

15. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

Chapter 1: Introduction 3

16. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

17. OpenBSD 3.1 and 3.2
GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

18. FreeBSD 4.7
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-
freebsd4.7.

If you use GSS on, or port GSS to, a new platform please report it to the author.

1.4 Bug Reports

If you think you have found a bug in GSS, please investigate it and report it.
• Please make sure that the bug is really in GSS, and preferably also check that it hasn’t

already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gss@josefsson.org’

Chapter 2: Preparation 4

2 Preparation

To use GSS, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with GSS may be to look
at the examples at the end of this manual.

2.1 Header

All standard interfaces (data types and functions) of the official GSS API are defined in
the header file ‘gss/api.h’. The file is taken verbatim from the RFC (after correcting a few
typos) where it is known as gssapi.h. However, to be able to co-exist gracefully with other
GSS-API implementation, the name gssapi.h was changed.

The header file ‘gss.h’ contains a few non-standard extensions, C++ namespace fixes, and
takes care of including header files related to all supported mechanisms (e.g., gss/krb5.h).
Therefore, including ‘gss.h’ in your project is recommended over ‘gss/api.h’. If using ‘gss.h’
instead of ‘gss/api.h’ causes problems, it should be regarded a bug.

You must include either file in all programs using the library, either directly or through
some other header file, like this:

#include <gss.h>

The name space of GSS is gss_* for function names, gss_* for data types and GSS_*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

Each supported GSS mechanism may want to expose mechanism specific functionality,
and can do so through one or more header files under the ‘gss/’ directory. The Kerberos 5
mechanism uses the file ‘gss/krb5.h’, but again, it is included (with C++ namespace fixes)
from ‘gss.h’.

2.2 Initialization

GSS does not need to be initialized before it can be used.

2.3 Version Check

It is often desirable to check that the version of GSS used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup. The function is called gss_
check_version() and is described in See Chapter 4 [Extended GSS API], page 23.

The normal way to use the function is to put something similar to the following early in
your main():

Chapter 2: Preparation 5

#include <gss.h>
...
if (!gss_check_version (GSS_VERSION))

{
printf ("gss_check_version() failed:\n"

"Header file incompatible with shared library.\n");
exit(1);

}

2.4 Building the source

If you want to compile a source file that includes the ‘gss.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, GSS uses the external package pkg-config that knows the path to
the include file and other configuration options. The options that need to be added to the
compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
gss. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config gss --cflags‘

Adding the output of ‘pkg-config gss --cflags’ to the compilers command line will
ensure that the compiler can find the ‘gss.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
gss can be used. For convenience, this option also outputs all other options that are
required to link the program with the GSS libarary (for instance, the ‘-lshishi’ option).
The example shows how to link ‘foo.o’ with GSS into a program foo.

gcc -o foo foo.o ‘pkg-config gss --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config gss --cflags --libs‘

Chapter 3: Standard GSS API 6

3 Standard GSS API

As an alternative to the native Shishi programming API, it is possible to program Shishi
through the Generic Security Services (GSS) API. The advantage of using GSS-API in your
security application, instead of the native Shishi API, is that it will be easier to port your
application between different Kerberos 5 implementations, and even beyond Kerberos 5 to
different security systems, that support GSS-API.

In the free software world, however, the only widely used security system that supports
GSS-API is Kerberos 5, so this advantage is somewhat academic. But if you are porting
applications using GSS-API for other Kerberos 5 implementations, or want a more mature
and stable API than the native Shishi API, you may find using Shishi’s GSS-API interface
compelling. Note that GSS-API only offer basic services, for more advanced uses you must
use the native API.

The remaining part of this section assume you are familiar with GSS-API in general,
and only describe how to hook up your application written using GSS-API with Shishi. For
general GSS-API information, and some programming examples, a good guide is available
online at http://docs.sun.com/db/doc/816-1331.

Shishi exposes the GSS-API through the standard ‘gssapi.h’ header file and the library
‘libshishi-gss’. To avoid conflicting with other GSS-API implementations on your system,
the header file is installed in a sub-directory ‘shishi/’ under the header file location specified
when building Shishi. You must include this in all programs using the library, either directly
or through some other header file, like this:

#include <gss.h>

The library ‘libshishi-gss’ is installed in the normal object code library location.
To facilitate finding the proper parameters for your compiler, the pkg-config tool can

be used. Compile your application ‘foo.c’ with the Shishi GSS interface like this:
gcc -o foo foo.c ‘pkg-config shishi-gss --cflags --libs‘

Of course you do not need to use both ‘--cflags’ and ‘--libs’ at the same time, see
the full discussion elsewhere in this manual (see Section 2.4 [Building the source], page 5),
but note that you must use ‘shishi-gss’ instead of ‘shishi’ as the library parameter to pkg-
config.

3.1 Credential Management

Table 2-1 GSS-API Credential-management Routines

Routine Section Function
------- ------- --------
gss_acquire_cred 5.2 Assume a global identity; Obtain

a GSS-API credential handle for
pre-existing credentials.

gss_add_cred 5.3 Construct credentials
incrementally

gss_inquire_cred 5.21 Obtain information about a
credential

Chapter 3: Standard GSS API 7

gss_inquire_cred_by_mech 5.22 Obtain per-mechanism information
about a credential.

gss_release_cred 5.27 Discard a credential handle.

[Function]OM_uint32 gss release cred (OM_uint32 * minor_status,
gss_cred_id_t * cred_handle)

minor status: Mechanism specific status code.

cred handle: Optional opaque handle identifying credential to be released. If
GSS C NO CREDENTIAL is supplied, the routine will complete successfully, but
will do nothing.

Informs GSS-API that the specified credential handle is no longer required by the
application, and frees associated resources. Implementations are encouraged to set
the cred handle to GSS C NO CREDENTIAL on successful completion of this call.

Returns GSS S COMPLETE for successful completion, and GSS S NO CRED for
credentials could not be accessed.

3.2 Context-Level Routines

Table 2-2 GSS-API Context-Level Routines

Routine Section Function
------- ------- --------
gss_init_sec_context 5.19 Initiate a security context with

a peer application
gss_accept_sec_context 5.1 Accept a security context

initiated by a
peer application

gss_delete_sec_context 5.9 Discard a security context
gss_process_context_token 5.25 Process a token on a security

context from a peer application
gss_context_time 5.7 Determine for how long a context

will remain valid
gss_inquire_context 5.20 Obtain information about a

security context
gss_wrap_size_limit 5.34 Determine token-size limit for

gss_wrap on a context
gss_export_sec_context 5.14 Transfer a security context to

another process
gss_import_sec_context 5.17 Import a transferred context

Chapter 3: Standard GSS API 8

[Function]OM_uint32 gss init sec context (OM_uint32 * minor_status, const
gss_cred_id_t initiator_cred_handle, gss_ctx_id_t * context_handle,
const gss_name_t target_name, const gss_OID mech_type, OM_uint32
req_flags, OM_uint32 time_req, const gss_channel_bindings_t
input_chan_bindings, const gss_buffer_t input_token, gss_OID *
actual_mech_type, gss_buffer_t output_token, OM_uint32 * ret_flags,
OM_uint32 * time_rec)

minor status: Mechanism specific status code.
initiator cred handle: Optional handle for credentials claimed. Supply
GSS C NO CREDENTIAL to act as a default initiator principal. If no default
initiator is defined, the function will return GSS S NO CRED.
context handle: Context handle for new context. Supply GSS C NO CONTEXT for
first call; use value returned by first call in continuation calls. Resources associated
with this context-handle must be released by the application after use with a call to
gss_delete_sec_context().
target name: Name of target.
mech type: Optional object ID of desired mechanism. Supply GSS C NO OID to
obtain an implementation specific default
req flags: Contains various independent flags, each of which requests that the context
support a specific service option. Symbolic names are provided for each flag, and the
symbolic names corresponding to the required flags should be logically-ORed together
to form the bit-mask value. See below for details.
time req: Optional Desired number of seconds for which context should remain valid.
Supply 0 to request a default validity period.
input chan bindings: Optional Application-specified bindings. Allows application
to securely bind channel identification information to the security context. Specify
GSS C NO CHANNEL BINDINGS if channel bindings are not used.
input token: Optional (see text) Token received from peer application.
Supply GSS C NO BUFFER, or a pointer to a buffer containing the value
GSS C EMPTY BUFFER on initial call.
actual mech type: Optional actual mechanism used. The OID returned via this
parameter will be a pointer to static storage that should be treated as read-only; In
particular the application should not attempt to free it. Specify NULL if not required.
output token: Token to be sent to peer application. If the length field of the returned
buffer is zero, no token need be sent to the peer application. Storage associated with
this buffer must be freed by the application after use with a call to gss_release_
buffer().
ret flags: Optional various independent flags, each of which indicates that the context
supports a specific service option. Specify NULL if not required. Symbolic names are
provided for each flag, and the symbolic names corresponding to the required flags
should be logically-ANDed with the ret flags value to test whether a given option is
supported by the context. See below for details.
time rec: Optional number of seconds for which the context will remain valid. If the
implementation does not support context expiration, the value GSS C INDEFINITE
will be returned. Specify NULL if not required.

Chapter 3: Standard GSS API 9

Initiates the establishment of a security context between the application and a
remote peer. Initially, the input token parameter should be specified either as
GSS C NO BUFFER, or as a pointer to a gss buffer desc object whose length
field contains the value zero. The routine may return a output token which should
be transferred to the peer application, where the peer application will present
it to gss accept sec context. If no token need be sent, gss init sec context will
indicate this by setting the length field of the output token argument to zero. To
complete the context establishment, one or more reply tokens may be required
from the peer application; if so, gss init sec context will return a status containing
the supplementary information bit GSS S CONTINUE NEEDED. In this case,
gss init sec context should be called again when the reply token is received from the
peer application, passing the reply token to gss init sec context via the input token
parameters.
Portable applications should be constructed to use the token length and return status
to determine whether a token needs to be sent or waited for. Thus a typical portable
caller should always invoke
int context established = 0; gss ctx id t context hdl = GSS C NO CONTEXT; ...
input token->length = 0;
while (!context established) { maj stat = gss init sec context(min_stat,
cred hdl, context_hdl, target name, desired mech, desired services, desired time,
input bindings, input token, actual_mech, output token, actual_services,
actual_time); if (GSS ERROR(maj stat)) { report error(maj stat, min stat); };
if (output token->length != 0) { send token to peer(output token);
gss release buffer(min_stat, output token) }; if (GSS ERROR(maj stat))
{

if (context hdl != GSS C NO CONTEXT) gss delete sec context(min_stat,
context_hdl, GSS C NO BUFFER); break; };
if (maj stat & GSS S CONTINUE NEEDED) { receive token from peer(input token);
} else { context established = 1; }; };
Whenever the routine returns a major status that includes the value
GSS S CONTINUE NEEDED, the context is not fully established and the
The value returned via the time rec parameter is undefined Unless the accompanying
ret flags parameter contains the bit GSS C PROT READY FLAG, indicating that
per-message services may be applied in advance of a successful completion status,
the value returned via the actual mech type parameter is undefined until the routine
returns a major status value of GSS S COMPLETE.
The values of the GSS C DELEG FLAG, GSS C MUTUAL FLAG,
GSS C REPLAY FLAG, GSS C SEQUENCE FLAG, GSS C CONF FLAG,
GSS C INTEG FLAG and GSS C ANON FLAG bits returned via the ret flags
parameter should contain the values that the implementation expects would be
valid if context establishment were to succeed. In particular, if the application
has requested a service such as delegation or anonymous authentication via
the req flags argument, and such a service is unavailable from the underlying
mechanism, gss init sec context should generate a token that will not provide
the service, and indicate via the ret flags argument that the service will not be

Chapter 3: Standard GSS API 10

supported. The application may choose to abort the context establishment by
calling gss delete sec context (if it cannot continue in the absence of the service),
or it may choose to transmit the token and continue context establishment (if the
service was merely desired but not mandatory).
The values of the GSS C PROT READY FLAG and GSS C TRANS FLAG bits
within ret flags should indicate the actual state at the time gss init sec context re-
turns, whether or not the context is fully established.
GSS-API implementations that support per-message protection are encouraged to
set the GSS C PROT READY FLAG in the final ret flags returned to a caller (i.e.
when accompanied by a GSS S COMPLETE status code). However, applications
should not rely on this behavior as the flag was not defined in Version 1 of the GSS-
API. Instead, applications should determine what per-message services are available
after a successful context establishment according to the GSS C INTEG FLAG and
GSS C CONF FLAG values.
All other bits within the ret flags argument should be set to zero.
If the initial call of gss_init_sec_context() fails, the implementation should not
create a context object, and should leave the value of the context handle parameter set
to GSS C NO CONTEXT to indicate this. In the event of a failure on a subsequent
call, the implementation is permitted to delete the "half-built" security context (in
which case it should set the context handle parameter to GSS C NO CONTEXT),
but the preferred behavior is to leave the security context untouched for the applica-
tion to delete (using gss delete sec context).
During context establishment, the informational status bits GSS S OLD TOKEN
and GSS S DUPLICATE TOKEN indicate fatal errors, and GSS-API mechanisms
should always return them in association with a routine error of GSS S FAILURE.
This requirement for pairing did not exist in version 1 of the GSS-API specification,
so applications that wish to run over version 1 implementations must special-case
these codes.
GSS C DELEG FLAG True - Delegate credentials to remote peer False - Don’t del-
egate
GSS C MUTUAL FLAG True - Request that remote peer authenticate itself False -
Authenticate self to remote peer only
GSS C REPLAY FLAG True - Enable replay detection for messages protected with
gss wrap or gss get mic False - Don’t attempt to detect replayed messages
GSS C SEQUENCE FLAG True - Enable detection of out-of-sequence protected
messages False - Don’t attempt to detect out-of-sequence messages
GSS C CONF FLAG True - Request that confidentiality service be made available
(via gss wrap) False - No per-message confidentiality service is required.
GSS C INTEG FLAG True - Request that integrity service be made available (via
gss wrap or gss get mic) False - No per-message integrity service is required.
GSS C ANON FLAG True - Do not reveal the initiator’s identity to the acceptor.
False - Authenticate normally.
GSS C DELEG FLAG True - Credentials were delegated to the remote peer False -
No credentials were delegated

Chapter 3: Standard GSS API 11

GSS C MUTUAL FLAG True - The remote peer has authenticated itself. False -
Remote peer has not authenticated itself.
GSS C REPLAY FLAG True - replay of protected messages will be detected False -
replayed messages will not be detected
GSS C SEQUENCE FLAG True - out-of-sequence protected messages will be de-
tected False - out-of-sequence messages will not be detected
GSS C CONF FLAG True - Confidentiality service may be invoked by calling
gss wrap routine False - No confidentiality service (via gss wrap) available. gss wrap
will provide message encapsulation, data-origin authentication and integrity services
only.
GSS C INTEG FLAG True - Integrity service may be invoked by calling either
gss get mic or gss wrap routines. False - Per-message integrity service unavailable.
GSS C ANON FLAG True - The initiator’s identity has not been revealed, and will
not be revealed if any emitted token is passed to the acceptor. False - The initiator’s
identity has been or will be authenticated normally.
GSS C PROT READY FLAG True - Protection services (as specified by the states
of the GSS C CONF FLAG and GSS C INTEG FLAG) are available for use
if the accompanying major status return value is either GSS S COMPLETE or
GSS S CONTINUE NEEDED. False - Protection services (as specified by the states
of the GSS C CONF FLAG and GSS C INTEG FLAG) are available only if the
accompanying major status return value is GSS S COMPLETE.
GSS C TRANS FLAG True - The resultant security context may be transferred to
other processes via a call to gss_export_sec_context(). False - The security context
is not transferable.
All other bits should be set to zero.
Returns:
GSS S COMPLETE Successful completion
GSS S CONTINUE NEEDED Indicates that a token from the peer application is
required to complete the context, and that gss init sec context must be called again
with that token.
GSS S DEFECTIVE TOKEN Indicates that consistency checks performed on the
input token failed
GSS S DEFECTIVE CREDENTIAL Indicates that consistency checks performed on
the credential failed.
GSS S NO CRED The supplied credentials were not valid for context initiation, or
the credential handle did not reference any credentials.
GSS S CREDENTIALS EXPIRED The referenced credentials have expired
GSS S BAD BINDINGS The input token contains different channel bindings to
those specified via the input chan bindings parameter
GSS S BAD SIG The input token contains an invalid MIC, or a MIC that could not
be verified
GSS S OLD TOKEN The input token was too old. This is a fatal error during
context establishment

Chapter 3: Standard GSS API 12

GSS S DUPLICATE TOKEN The input token is valid, but is a duplicate of a token
already processed. This is a fatal error during context establishment.
GSS S NO CONTEXT Indicates that the supplied context handle did not refer to a
valid context
GSS S BAD NAMETYPE The provided target name parameter contained an invalid
or unsupported type of name
GSS S BAD NAME The provided target name parameter was ill-formed.
GSS S BAD MECH The specified mechanism is not supported by the provided cre-
dential, or is unrecognized by the implementation.

[Function]OM_uint32 gss delete sec context (OM_uint32 * minor_status,
gss_ctx_id_t * context_handle, gss_buffer_t output_token)

minor status: Mechanism specific status code.
context handle: Context handle identifying context to delete. After deleting the
context, the GSS-API will set this context handle to GSS C NO CONTEXT.
output token: Optional token to be sent to remote application to instruct it to also
delete the context. It is recommended that applications specify GSS C NO BUFFER
for this parameter, requesting local deletion only. If a buffer parameter is provided by
the application, the mechanism may return a token in it; mechanisms that implement
only local deletion should set the length field of this token to zero to indicate to the
application that no token is to be sent to the peer.
Delete a security context. gss_delete_sec_context() will delete the local data
structures associated with the specified security context, and may generate an out-
put token, which when passed to the peer gss_process_context_token() will in-
struct it to do likewise. If no token is required by the mechanism, the GSS-API
should set the length field of the output token (if provided) to zero. No further
security services may be obtained using the context specified by context handle.
In addition to deleting established security contexts, gss_delete_sec_context()
must also be able to delete "half-built" security contexts resulting from an incomplete
sequence of gss_init_sec_context()/gss_accept_sec_context() calls.
The output token parameter is retained for compatibility with version 1 of the
GSS-API. It is recommended that both peer applications invoke gss_delete_sec_
context() passing the value GSS C NO BUFFER for the output token parameter,
indicating that no token is required, and that gss_delete_sec_context() should
simply delete local context data structures. If the application does pass a valid
buffer to gss_delete_sec_context(), mechanisms are encouraged to return a
zero-length token, indicating that no peer action is necessary, and that no token
should be transferred by the application.
Returns GSS S COMPLETE for successful completion, and GSS S NO CONTEXT
if no valid context was supplied.

3.3 Per-Message Routines

Table 2-3 GSS-API Per-message Routines

Chapter 3: Standard GSS API 13

Routine Section Function
------- ------- --------
gss_get_mic 5.15 Calculate a cryptographic message

integrity code (MIC) for a
message; integrity service

gss_verify_mic 5.32 Check a MIC against a message;
verify integrity of a received
message

gss_wrap 5.33 Attach a MIC to a message, and
optionally encrypt the message
content;
confidentiality service

gss_unwrap 5.31 Verify a message with attached
MIC, and decrypt message content
if necessary.

[Function]OM_uint32 gss wrap (OM_uint32 * minor_status, const
gss_ctx_id_t context_handle, int conf_req_flag, gss_qop_t qop_req,
const gss_buffer_t input_message_buffer, int * conf_state,
gss_buffer_t output_message_buffer)

minor status: Mechanism specific status code.
context handle: Identifies the context on which the message will be sent
conf req flag : Whether confidentiality is requested.
qop req: Specifies required quality of protection. A mechanism-specific default
may be requested by setting qop req to GSS C QOP DEFAULT. If an unsup-
ported protection strength is requested, gss wrap will return a major status of
GSS S BAD QOP.
input message buffer: Message to be protected.
conf state: Optional output variable indicating if confidentiality services have been
applied.
output message buffer: Buffer to receive protected message. Storage associated with
this message must be freed by the application after use with a call to gss_release_
buffer().
Attaches a cryptographic MIC and optionally encrypts the specified input message.
The output message contains both the MIC and the message. The qop req parameter
allows a choice between several cryptographic algorithms, if supported by the chosen
mechanism.
Since some application-level protocols may wish to use tokens emitted by gss_wrap()
to provide "secure framing", implementations must support the wrapping of zero-
length messages.
Returns
GSS S COMPLETE Successful completion
GSS S CONTEXT EXPIRED The context has already expired
GSS S NO CONTEXT The context handle parameter did not identify a valid con-
text

Chapter 3: Standard GSS API 14

GSS S BAD QOP The specified QOP is not supported by the mechanism.

[Function]OM_uint32 gss unwrap (OM_uint32 * minor_status, const
gss_ctx_id_t context_handle, const gss_buffer_t
input_message_buffer, gss_buffer_t output_message_buffer, int *
conf_state, gss_qop_t * qop_state)

minor status: Mechanism specific status code.
context handle: Identifies the context on which the message arrived
input message buffer: input protected message
output message buffer: Buffer to receive unwrapped message. Storage associated
with this buffer must be freed by the application after use use with a call to gss_
release_buffer().
conf state: optional output variable indicating if confidentiality protection was used.
qop state: optional output variable indicating quality of protection.
Converts a message previously protected by gss wrap back to a usable form, verifying
the embedded MIC. The conf state parameter indicates whether the message was
encrypted; the qop state parameter indicates the strength of protection that was
used to provide the confidentiality and integrity services.
Since some application-level protocols may wish to use tokens emitted by gss_wrap()
to provide "secure framing", implementations must support the wrapping and un-
wrapping of zero-length messages.
Returns:
GSS S COMPLETE Successful completion
GSS S DEFECTIVE TOKEN The token failed consistency checks
GSS S BAD SIG The MIC was incorrect
GSS S DUPLICATE TOKEN The token was valid, and contained a correct MIC for
the message, but it had already been processed
GSS S OLD TOKEN The token was valid, and contained a correct MIC for the
message, but it is too old to check for duplication.
GSS S UNSEQ TOKEN The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; a later token has already been received.
GSS S GAP TOKEN The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; an earlier expected token has not yet
been received.
GSS S CONTEXT EXPIRED The context has already expired
GSS S NO CONTEXT The context handle parameter did not identify a valid con-
text

3.4 Name Manipulation

Table 2-4 GSS-API Name manipulation Routines

Routine Section Function

Chapter 3: Standard GSS API 15

------- ------- --------
gss_import_name 5.16 Convert a contiguous string name

to internal-form
gss_display_name 5.10 Convert internal-form name to

text
gss_compare_name 5.6 Compare two internal-form names

gss_release_name 5.28 Discard an internal-form name
gss_inquire_names_for_mech 5.24 List the name-types supported by

the specified mechanism
gss_inquire_mechs_for_name 5.23 List mechanisms that support the

specified name-type
gss_canonicalize_name 5.5 Convert an internal name to an MN
gss_export_name 5.13 Convert an MN to export form
gss_duplicate_name 5.12 Create a copy of an internal name

[Function]OM_uint32 gss import name (OM_uint32 * minor_status, const
gss_buffer_t input_name_buffer, const gss_OID input_name_type,
gss_name_t * output_name)

minor status: Mechanism specific status code
input name buffer: buffer containing contiguous string name to convert
input name type: Optional Object ID specifying type of printable name. Applica-
tions may specify either GSS C NO OID to use a mechanism-specific default print-
able syntax, or an OID recognized by the GSS-API implementation to name a specific
namespace.
output name: returned name in internal form. Storage associated with this name
must be freed by the application after use with a call to gss_release_name().
Convert a contiguous string name to internal form. In general, the internal name
returned (via the <output name> parameter) will not be an MN; the exception to
this is if the <input name type> indicates that the contiguous string provided via the
<input name buffer> parameter is of type GSS C NT EXPORT NAME, in which
case the returned internal name will be an MN for the mechanism that exported the
name.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAMETYPE
when the input name type was unrecognized, GSS S BAD NAME when the in-
put name parameter could not be interpreted as a name of the specified type, and
GSS S BAD MECH when the input name-type was GSS C NT EXPORT NAME,
but the mechanism contained within the input-name is not supported.

[Function]OM_uint32 gss display name (OM_uint32 * minor_status, const
gss_name_t input_name, gss_buffer_t output_name_buffer, gss_OID *
output_name_type)

minor status: Mechanism specific status code.
input name: Name to be displayed
output name buffer: Buffer to receive textual name string. The application must free
storage associated with this name after use with a call to gss_release_buffer().

Chapter 3: Standard GSS API 16

output name type: Optional type of the returned name. The returned gss OID will
be a pointer into static storage, and should be treated as read-only by the caller
(in particular, the application should not attempt to free it). Specify NULL if not
required.
Allows an application to obtain a textual representation of an opaque internal-form
name for display purposes. The syntax of a printable name is defined by the GSS-API
implementation.
If input name denotes an anonymous principal, the implementation should return
the gss OID value GSS C NT ANONYMOUS as the output name type, and a tex-
tual name that is syntactically distinct from all valid supported printable names in
output name buffer.
If input name was created by a call to gss import name, specifying GSS C NO OID
as the name-type, implementations that employ lazy conversion between name types
may return GSS C NO OID via the output name type parameter.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAME when
input name was ill-formed.

[Function]OM_uint32 gss compare name (OM_uint32 * minor_status, const
gss_name_t name1, const gss_name_t name2, int * name_equal)

minor status: Mechanism specific status code.
name1: Internal-form name.
name2: Internal-form name.
name equal: non-zero if names refer to same entity.
Allows an application to compare two internal-form names to determine whether they
refer to the same entity.
If either name presented to gss compare name denotes an anonymous principal, the
routines should indicate that the two names do not refer to the same identity.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAMETYPE
when the two names were of incomparable types, and GSS S BAD NAME if one or
both of name1 or name2 was ill-formed.

[Function]OM_uint32 gss release name (OM_uint32 * minor_status,
gss_name_t * name)

minor status: Mechanism specific status code.
name: The name to be deleted.
Free GSSAPI-allocated storage associated with an internal-form name. Implementa-
tions are encouraged to set the name to GSS C NO NAME on successful completion
of this call.
Returns GSS S COMPLETE for successful completion, and GSS S BAD NAME
when the name parameter did not contain a valid name.

[Function]OM_uint32 gss canonicalize name (OM_uint32 * minor_status,
const gss_name_t input_name, const gss_OID mech_type, gss_name_t *
output_name)

minor status: Mechanism specific status code.

Chapter 3: Standard GSS API 17

input name: The name for which a canonical form is desired.
mech type: The authentication mechanism for which the canonical form of the name
is desired. The desired mechanism must be specified explicitly; no default is provided.
output name: The resultant canonical name. Storage associated with this name must
be freed by the application after use with a call to gss_release_name().
Generate a canonical mechanism name (MN) from an arbitrary internal name. The
mechanism name is the name that would be returned to a context acceptor on suc-
cessful authentication of a context where the initiator used the input name in a suc-
cessful call to gss acquire cred, specifying an OID set containing <mech type> as its
only member, followed by a call to gss init sec context, specifying <mech type> as
the authentication mechanism.
Returns
GSS S COMPLETE Successful completion.
GSS S BAD MECH The identified mechanism is not supported.
GSS S BAD NAMETYPE The provided internal name contains no elements that
could be processed by the specified mechanism.
GSS S BAD NAME The provided internal name was ill-formed.

[Function]OM_uint32 gss inquire names for mech (OM_uint32
*minor_status, const gss_OID mechanism, gss_OID_set *name_types)

minor status: Implementation specific status code.
mechanism: The mechanism to be interrogated.
name types: Output set of name-types supported by the specified mechanism.
The returned OID set must be freed by the application after use with a call to
gss release oid set().
Outputs the set of nametypes supported by the specified mechanism.
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss inquire mechs for name (OM_uint32
*minor_status, const gss_name_t input_name, gss_OID_set *mech_types)

minor status: Implementation specific status code.
input name: The name to which the inquiry relates.
mech types: Output set of mechanisms that may support the specified name. The re-
turned OID set must be freed by the caller after use with a call to gss release oid set().
Outputs the set of mechanisms supported by the GSS-API implementation that may
be able to process the specified name.
Each mechanism returned will recognize at least one element within the name. It is
permissible for this routine to be implemented within a mechanism-independent GSS-
API layer, using the type information contained within the presented name, and based
on registration information provided by individual mechanism implementations. This
means that the returned mech types set may indicate that a particular mechanism
will understand the name when in fact it would refuse to accept the name as input to
gss canonicalize name(), gss init sec context(), gss acquire cred() or gss add cred()

Chapter 3: Standard GSS API 18

(due to some property of the specific name, as opposed to the name type). Thus this
routine should be used only as a pre-filter for a call to a subsequent mechanism-specific
routine.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAME to indi-
cate that the input name parameter was ill-formed, and GSS S BAD NAMETYPE
to indicate that the input name parameter contained an invalid or unsupported type
of name.

[Function]OM_uint32 gss canonicalize name (OM_uint32 *minor_status,
const gss_name_t input_name, const gss_OID mech_type, gss_name_t
*output_name)

minor status: Mechanism specific status code.
input name: The name for which a canonical form is desired.
mech type: The authentication mechanism for which the canonical form of the name
is desired. The desired mechanism must be specified explicitly; no default is provided.
output name: The resultant canonical name. Storage associated with this name must
be freed by the application after use with a call to gss release name().
Generate a canonical mechanism name (MN) from an arbitrary internal name. The
mechanism name is the name that would be returned to a context acceptor on suc-
cessful authentication of a context where the initiator used the input name in a suc-
cessful call to gss acquire cred, specifying an OID set containing <mech type> as its
only member, followed by a call to gss init sec context, specifying <mech type> as
the authentication mechanism.
Returns GSS S COMPLETE for successful completion, GSS S BAD MECH to in-
dicate that the identified mechanism is not supported, GSS S BAD NAMETYPE to
indicate that the provided internal name contains no elements that could be processed
by the specified mechanism, and GSS S BAD NAME to indicate that the provided
internal name was ill-formed.

[Function]OM_uint32 gss export name (OM_uint32 *minor_status, const
gss_name_t input_name, gss_buffer_t exported_name)

minor status: Mechanism specific status code.
input name: The mechanism name to be exported.
exported name: Output variable with canonical contiguous string form of
input name. Storage associated with this string must freed by the application after
use with gss release buffer().
To produce a canonical contiguous string representation of a mechanism name (MN),
suitable for direct comparison (e.g. with memcmp) for use in authorization functions
(e.g. matching entries in an access-control list). The input name parameter must
specify a valid MN (i.e. an internal name generated by gss accept sec context or by
gss canonicalize name).
Returns GSS S COMPLETE for successful completion, GSS S NAME NOT MN
to indicate that the provided internal name was not a mechanism name,
GSS S BAD NAME to indicate that the provided internal name was ill-formed, and
GSS S BAD NAMETYPE to indicate that the internal name was of a type not
supported by the GSS-API implementation.

Chapter 3: Standard GSS API 19

[Function]OM_uint32 gss duplicate name (OM_uint32 * minor_status, const
gss_name_t src_name, gss_name_t * dest_name)

minor status: Mechanism specific status code.

src name: Internal name to be duplicated.

dest name: The resultant copy of <src name>. Storage associated with this name
must be freed by the application after use with a call to gss_release_name().

Create an exact duplicate of the existing internal name src name. The new dest name
will be independent of src name (i.e. src name and dest name must both be released,
and the release of one shall not affect the validity of the other).

Returns GSS S COMPLETE for successful completion, and GSS S BAD NAME
when the src name parameter was ill-formed.

3.5 Miscellaneous Routines

Table 2-5 GSS-API Miscellaneous Routines

Routine Section Function
------- ------- --------
gss_add_oid_set_member 5.4 Add an object identifier to

a set
gss_display_status 5.11 Convert a GSS-API status code

to text
gss_indicate_mechs 5.18 Determine available underlying

authentication mechanisms
gss_release_buffer 5.26 Discard a buffer
gss_release_oid_set 5.29 Discard a set of object

identifiers
gss_create_empty_oid_set 5.8 Create a set containing no

object identifiers
gss_test_oid_set_member 5.30 Determines whether an object

identifier is a member of a set.

[Function]OM_uint32 gss release buffer (OM_uint32 * minor_status,
gss_buffer_t buffer)

minor status: Mechanism specific status code.

buffer: The storage associated with the buffer will be deleted. The gss buffer desc
object will not be freed, but its length field will be zeroed.

Free storage associated with a buffer. The storage must have been allocated by a
GSS-API routine. In addition to freeing the associated storage, the routine will zero
the length field in the descriptor to which the buffer parameter refers, and implemen-
tations are encouraged to additionally set the pointer field in the descriptor to NULL.
Any buffer object returned by a GSS-API routine may be passed to gss release buffer
(even if there is no storage associated with the buffer).

Returns GSS S COMPLETE for successful completion.

Chapter 3: Standard GSS API 20

[Function]OM_uint32 gss create empty oid set (OM_uint32 * minor_status,
gss_OID_set * oid_set)

minor status: Mechanism specific status code
oid set: The empty object identifier set. The routine will allocate the
gss OID set desc object, which the application must free after use with a call to
gss_release_oid_set().
Create an object-identifier set containing no object identifiers, to which members
may be subsequently added using the gss_add_oid_set_member() routine. These
routines are intended to be used to construct sets of mechanism object identifiers, for
input to gss acquire cred.
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss add oid set member (OM_uint32 * minor_status,
const gss_OID member_oid, gss_OID_set * oid_set)

minor status: Mechanism specific status code
member oid: The object identifier to copied into the set.
oid set: The set in which the object identifier should be inserted.
Add an Object Identifier to an Object Identifier set. This routine is intended for use
in conjunction with gss create empty oid set when constructing a set of mechanism
OIDs for input to gss acquire cred. The oid set parameter must refer to an OID-
set that was created by GSS-API (e.g. a set returned by gss_create_empty_oid_
set()). GSS-API creates a copy of the member oid and inserts this copy into the
set, expanding the storage allocated to the OID-set’s elements array if necessary.
The routine may add the new member OID anywhere within the elements array,
and implementations should verify that the new member oid is not already contained
within the elements array; if the member oid is already present, the oid set should
remain unchanged.
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss test oid set member (OM_uint32 * minor_status,
const gss_OID member, const gss_OID_set set, int * present)

minor status: Mechanism specific status code
member: The object identifier whose presence is to be tested.
set: The Object Identifier set.
present: output indicating if the specified OID is a member of the set, zero if not.
Interrogate an Object Identifier set to determine whether a specified Object Identifier
is a member. This routine is intended to be used with OID sets returned by gss_
indicate_mechs(), gss_acquire_cred(), and gss_inquire_cred(), but will also
work with user-generated sets.
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss release oid set (OM_uint32 * minor_status,
gss_OID_set * set)

minor status: Mechanism specific status code
set: The storage associated with the gss OID set will be deleted.

Chapter 3: Standard GSS API 21

Free storage associated with a GSSAPI-generated gss OID set object. The set pa-
rameter must refer to an OID-set that was returned from a GSS-API routine. gss_
release_oid_set() will free the storage associated with each individual member
OID, the OID set’s elements array, and the gss OID set desc.

Implementations are encouraged to set the gss OID set parameter to
GSS C NO OID SET on successful completion of this routine.

Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss indicate mechs (OM_uint32 *minor_status,
gss_OID_set *mech_set)

minor status: Mechanism specific status code.

mech set: Output OID set with implementation-supported mechanisms.

Allows an application to determine which underlying security mechanisms are avail-
able.

The returned gss OID set value will be a dynamically-allocated OID set, that should
be released by the caller after use with a call to gss release oid set().

Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss display status (OM_uint32 *minor_status,
OM_uint32 status_value, int status_type, const gss_OID mech_type,
OM_uint32 *message_context, gss_buffer_t status_string)

minor status: Mechanism specific status code.

status value Status value to be converted

status type: Type of status code. Valid values include GSS C GSS CODE to indicate
that status value is a GSS status code, and GSS C MECH CODE to indicate that
status value is a mechanism status code.

mech type: Optional OID of underlying mechanism (used to interpret a minor status
value) Supply GSS C NO OID to obtain the system default.

message context: Input/output variable that should be initialized to zero by the
application prior to the first call. On return from gss display status(), a non-zero
status value parameter indicates that additional messages may be extracted from the
status code via subsequent calls to gss display status(), passing the same status value,
status type, mech type, and message context parameters.

status string : Output textual interpretation of the status value. Storage associ-
ated with this parameter must be freed by the application after use with a call to
gss release buffer().

Allows an application to obtain a textual representation of a GSS-API status code,
for display to the user or for logging purposes. Since some status values may indicate
multiple conditions, applications may need to call gss display status multiple times,
each call generating a single text string. The message context parameter is used by
gss display status to store state information about which error messages have already
been extracted from a given status value; message context must be initialized to 0
by the application prior to the first call, and gss display status will return a non-zero
value in this parameter if there are further messages to extract.

Chapter 3: Standard GSS API 22

The message context parameter contains all state information required by
gss display status in order to extract further messages from the status value;
even when a non-zero value is returned in this parameter, the application is not
required to call gss display status again unless subsequent messages are desired.
The following code extracts all messages from a given status code and prints them
to stderr:

OM_uint32 message_context;
OM_uint32 status_code;
OM_uint32 maj_status;
OM_uint32 min_status;
gss_buffer_desc status_string;

...

message_context = 0;

do {

maj_status = gss_display_status (
&min_status,
status_code,
GSS_C_GSS_CODE,
GSS_C_NO_OID,
&message_context,
&status_string)

fprintf(stderr,
"%.*s\n",
(int)status_string.length,

(char *)status_string.value);

gss_release_buffer(&min_status, &status_string);

} while (message_context != 0);

Returns GSS S COMPLETE for successful completion, GSS S BAD MECH to in-
dicate that translation in accordance with an unsupported mechanism type was re-
quested, and GSS S BAD STATUS to indicate that the status value was not recog-
nized, or the status type was neither GSS C GSS CODE nor GSS C MECH CODE.

Chapter 4: Extended GSS API 23

4 Extended GSS API

None of the following functions are standard GSS API functions. As such, they are not
declared in ‘gss/api.h’, but rather in ‘gss.h’.

[Function]const char * gss check version (const char * req_version)
req version: version string to compare with, or NULL
Check that the the version of the library is at minimum the one given as a string
in req_version and return the actual version string of the library; return NULL if
the condition is not met. If NULL is passed to this function no check is done and
only the version string is returned. It is a pretty good idea to run this function as
soon as possible, because it may also intializes some subsystems. In a multithreaded
environment if should be called before any more threads are created.

[Function]int gss oid equal (gss_OID first_oid, gss_OID second_oid)
Compare to OIDs for equality. Compares actual content, not just pointer equality.
Returns a boolean true iff the OIDs are equal.

[Function]OM_uint32 gss copy oid (OM_uint32 * minor_status, const gss_OID
src_oid, gss_OID dest_oid);

Make an exact copy of the given OID, that shares no memory areas with the orig-
inal. The contents of the copied OID must be deallocated by the caller. Returns
GSS S COMPLETE on success.

[Function]OM_uint32 gss duplicate oid (OM_uint32 * minor_status, const
gss_OID src_oid, gss_OID * dest_oid)

Allocate an exact copy of the given OID, that shares no memory areas with the
original. The newly created OID, and its contents, must be deallocated by the caller.
Returns GSS S COMPLETE on success.

[Function]int gss encapsulate token (gss_buffer_t input_message, gss_OID
token_oid, gss_buffer_t output_message)

input message: Message to be encapsulated.
token oid: OID of mechanism.
input message: Output buffer with encapsulated message.
Wrap a buffer in the mechanism-independent token format. This is used for the initial
token of a GSS-API context establishment sequence. It incorporates an identifier of
the mechanism type to be used on that context, and enables tokens to be interpreted
unambiguously at GSS-API peers. See further section 3.1 of RFC 2743.

[Function]int gss decapsulate token (gss_buffer_t input_message, gss_OID
token_oid, gss_buffer_t output_message)

input message: Message to decapsulated.
token oid: Output buffer with mechanism OID used in message.
input message: Output buffer with encapsulated message.
Unwrap a buffer in the mechanism-independent token format. This is the reverse of
gss_encapsulate_token. The translation is loss-less, all data is preserved as is.

Chapter 5: Acknowledgements 24

5 Acknowledgements

TBA

Appendix A: Criticism of GSS 25

Appendix A Criticism of GSS

The author has doubts whether GSS is a good solution for new projects looking for a
implementation agnostic security framework. We express these doubts in this section. GSS
can be criticized on several levels. We start with the actual implementation.

GSS do not appear to be designed by experienced C programmers. While generally this
may be a good thing (C is not the best language), but since they defined the API in C,
it is unfortunate. The primary evidence of this is the major status and minor status error
code solution. It is a complicated way to describe error conditions, but what makes matters
worse, the error condition is separated; half of the error condition is in the function return
value and the other half is in the first argument to the function, which is always a pointer
to an integer. (The pointer is not even allowed to be NULL, if the application doesn’t care
about the minor error code.) This makes the API unreadable, and difficult to use. A better
solutions would be to return a struct containing the entire error condition, which can be
accessed using macros, although we acknowledge that the C language used at the time may
not have allowed this (this may in fact be the reason the awkward solution was chosen).
Instead, the return value could have been passed back to callers using a pointer to a struct,
accessible using various macros, and the function could have a void prototype. The fact
that minor status is placed first in the parameter list increases the pain it is to use the API.
Important parameters should be placed first. A better place for minor status would have
been last in the prototypes.

Another evidence of the C inexperience are the memory management issues; GSS pro-
vides functions to deallocate data stored within, e.g., gss buffer t but the caller is respon-
sible of deallocating the gss buffer t struct itself. Memory management issues are error
prone, and this division easily leads to memory leaks (or worse). Instead, the API should
be the sole owner of all gss ctx id t, gss cred id t, and gss buffer t structures: they should
be allocated by the library, and deallocated (using the utility functions defined for this
purpose) by the library.

TBA: thread issues
TBA: multiple mechanisms in a GSS library
TBA: high-level criticism.
TBA: no credential forwarding.
TBA: krb5: no way to access authorization-data
TBA: krb5: firewall/pre-IP: iakerb status?
TBA: krb5: single-DES only
We also note that very few free security systems uses GSS, perhaps the only exception

to this are Kerberos 5 implementations. This suggest that the GSS may not have been so
“generic” as it was thought to be.

Our conclusion is that any new project that is looking for a security framework, that is
independent of any particular implementation, should look elsewhere. In particular SASL
is recommended. The most compelling argument is that SASL is, as its acronym suggest,
Simple, whereas GSS is not, in any regard.

Concept Index 26

Concept Index

A
AIX . 2

C
Compiling your application . 5

D
Debian . 2

F
FreeBSD . 3

G
gssapi.h, api.h, gss.h, krb5.h 4

H
HP-UX . 2

I
IRIX . 2

M
Mandrake . 2

N
NetBSD . 3

O
OpenBSD . 3

R
RedHat . 2

RedHat Advanced Server . 2

Reporting Bugs . 3

S
Solaris . 2

SuSE . 2

SuSE Linux . 2

T
Tru64 . 2

W
Windows . 2

Function and Data Index 27

Function and Data Index

gss_add_oid_set_member . 20
gss_canonicalize_name 16, 18
gss_check_version . 23
gss_compare_name . 16
gss_copy_oid . 23
gss_create_empty_oid_set 20
gss_decapsulate_token . 23
gss_delete_sec_context . 12
gss_display_name . 15
gss_display_status . 21
gss_duplicate_name . 19
gss_duplicate_oid . 23
gss_encapsulate_token . 23
gss_export_name . 18

gss_import_name . 15

gss_indicate_mechs . 21

gss_init_sec_context . 7

gss_inquire_mechs_for_name 17

gss_inquire_names_for_mech 17

gss_oid_equal . 23

gss_release_buffer . 19

gss_release_cred . 7

gss_release_name . 16

gss_release_oid_set . 20

gss_test_oid_set_member 20

gss_unwrap . 14

gss_wrap . 13

ii

Short Contents

1 Introduction. 1

2 Preparation . 4

3 Standard GSS API . 6

4 Extended GSS API . 23

5 Acknowledgements . 24

A Criticism of GSS . 25

Concept Index . 26

Function and Data Index . 27

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 Supported Platforms . 1
1.4 Bug Reports . 3

2 Preparation . 4
2.1 Header . 4
2.2 Initialization . 4
2.3 Version Check. 4
2.4 Building the source . 5

3 Standard GSS API. 6
3.1 Credential Management . 6
3.2 Context-Level Routines . 7
3.3 Per-Message Routines . 12
3.4 Name Manipulation . 14
3.5 Miscellaneous Routines . 19

4 Extended GSS API . 23

5 Acknowledgements . 24

Appendix A Criticism of GSS 25

Concept Index . 26

Function and Data Index . 27

	Introduction
	Getting Started
	Features
	Supported Platforms
	Bug Reports

	Preparation
	Header
	Initialization
	Version Check
	Building the source

	Standard GSS API
	Credential Management
	Context-Level Routines
	Per-Message Routines
	Name Manipulation
	Miscellaneous Routines

	Extended GSS API
	Acknowledgements
	Criticism of GSS
	Concept Index
	Function and Data Index
	Introduction
	Getting Started
	Features
	Supported Platforms
	Bug Reports
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Standard GSS API
	Credential Management
	Context-Level Routines
	Per-Message Routines
	Name Manipulation
	Miscellaneous Routines
	Extended GSS API
	Acknowledgements
	Criticism of GSS
	Concept Index
	Function and Data Index

