GNU Octave

A high-level interactive language for numerical computations
Edition 4 for Octave version 4.0.0-rc2
March 2015

Free Your Numbers

John W. Eaton
David Bateman

Sgren Hauberg
Rik Wehbring

Copyright (© 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011, 2013, 2015 John
W. Eaton.

This is the fourth edition of the Octave documentation, and is consistent with version
4.0.0-rc2 of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface. 1
Acknowledgements 1
Citing Octave in Publications i e 5)
How You Can Contribute to Octave 5)
DiIstribution 6

1 A Brief Introduction to Octave 7
1.1 Running OCtave.ot 7
1.2 Simple Examples. 7

1.2.1 Elementary Calculations. 7
1.2.2 Creating a Matrix e 8
1.2.3 Matrix Arithmetic 8
1.2.4 Solving Systems of Linear Equations............ i i, 8
1.2.5 Integrating Differential Equations i i 9
1.2.6 Producing Graphical OQutput 10
1.2.7 Editing What You Have Typed....... ... oo 10
1.2.8 Help and Documentation.......... ... 10
1.3 Conventionst 11
1301 FOmts .o 11
1.3.2 Evaluation Notation......... ... i i 11
1.3.3 Printing Notation 12
1.3.4 ErTor MeSSageS. . . oottt et e e 12
1.3.5 Format of Descriptionso 12
1.3.5.1 A Sample Function Description.............. ..., 12
1.3.5.2 A Sample Command Descriptionccviiiiiiiiiiann. 13

2 Getting Started 15

2.1 Invoking Octave from the Command Line 15
2.1.1 Command Line Optionsot 15
2.1.2 Startup Files. 19

2.2 Quitting OcCtave 19

2.3 Commands for Getting Help 20

2.4 Command Line Editingo. i 25
2.4.1 Cursor MoOtiono v 25
2.4.2 Killing and YanKking...........oooii 26
2.4.3 Commands For Changing Text 26
2.4.4 Letting Readline Type For You........ ... o i, 27
2.4.5 Commands For Manipulating The History............. 27
2.4.6 Customizing readlineouuuttt ettt 31
2.4.7 Customizing the Prompt 31
2.4.8 Diary and Echo Commands ..., 33

2.5 How Octave Reports Errors........ ..o i 34

ii

GNU Octave

2.6 Executable Octave Programs.ot 35
2.7 Comments in Octave Programs......... i 36
2.7.1 Single Line Commentsuuuutitt i 36
2.7.2 Block Comments.t e 37
2.7.3 Comments and the Help System............ i .. 37
Data Types. ... 39
3.1 Built-in Data Types. ... 39
3.1.1 Numeric ODbJects . ..o 42
3.1.2 Missing Data. e 43
3.1.3 String ODbJects . ..o 43
3.1.4 Data Structure ODbJectst 43
3.1.5 Cell Array ODbJectS . ..o 44
3.2 User-defined Data Types.ottt e 44
3.3 ODJECH SIZES . . vttt 44
Numeric Data Types 47
A1 MaAbTICES . oottt e 48
4.1. 1 Empty Matrices.o 51
4.2 RANEES < ot 52
4.3 Single Precision Data Types. ..o 53
4.4 Integer Data Typeso e 54
4.4.1 Integer Arithmetic i 56
4.5 Bit Manipulations 57
4.6 Logical Values o 60
4.7 Promotion and Demotion of Data Types ..., 61
4.8 Predicates for Numeric Objectso 62
Strings 67
5.1 Escape Sequences in String Constants.............ovviieiiineiineannn.. 67
5.2 Character ATTAYSottt ettt e e e e 68
5.3 Creating Stringsttt 69
5.3.1 Concatenating Strings.ooiiiiii i 70
5.3.2 Converting Numerical Data to Strings.............o ... 73
5.4 Comparing STIINgSo vttt et e e 75
5.5 Manipulating STrings.t 7
5.6 String CONVEISIONSttt ettt et e et et e e 89

5.7 Character Class FUNCEIONSottt e e e 94

6 Data Containers 99
6.1 SUIUCTUTES . ..ttt e e e e e 99
6.1.1 Basic Usage and Examples........ ..o i 99

6.1.2 SEructure ATTAYSttt e 103

6.1.3 Creating Structurest e 104

6.1.4 Manipulating Structures 107

6.1.5 Processing Data in Structures..........o 111

6.2 Cell ATTayS . oottt e 112
6.2.1 Basic Usage of Cell Arrayso 112

6.2.2 Creating Cell Arrays.ot e 114

6.2.3 Indexing Cell ATTayst e 116

6.2.4 Cell Arrays of Strings..........oiiiii i 118

6.2.5 Processing Data in Cell Arrays....... ..., 119

6.3 Comma Separated Lists............ o i 120
6.3.1 Comma Separated Lists Generated from Cell Arrays.................... 121

6.3.2 Comma Separated Lists Generated from Structure Arrays.............. 122

7 Variables 123
7.1 Global Variables 124
7.2 Persistent Variables. i 126
7.3 Status of Variables. ... 127

8 EXPressionsiiiiiiiii 135
8.1 Index EXPressions.ttt e 135
8.1.1 Advanced Indexing.t 136

8.2 Calling Functions 139
8.2.1 Call by Value 139

8.2.2 RECUISION . .\ttt e 140

8.3 Arithmetic Operatorsot 141
8.4 Comparison OPeratorsoe ittt 144
8.5 Boolean EXpressionso i 146
8.5.1 Element-by-element Boolean Operators............... ..., 146

8.5.2 Short-circuit Boolean Operators......... ..ot 147

8.6 Assignment EXPressions. 149
8.7 Increment OpPerators.ooiuuu it e 151
8.8 Operator Precedence. 152

9 Evaluation............... 155
9.1 Calling a Function by its Name i 155

9.2 Evaluation in a Different Contextt 157

iv GNU Octave
10 Statements........... 159
10.1 The if Statement e 159
10.2 The switch Statement........ ... i 161
10.2.1 Notes for the C Programmer 162
10.3 The while Statement.t e 163
10.4 The do-until Statement 164
10.5 The for Statement 164
10.5.1 Looping Over Structure Elements............. o i iii.. 165
10.6 The break Statemento 166
10.7 The continue Statementt 167
10.8 The unwind_protect Statement............ ... i 168
10.9 The try Statement 168
10.10 Continuation Lines e 169
11 Functions and Scripts................... 171
11.1 Introduction to Function and Script Files 171
11.2 Defining FUnctions. e 171
11.3 Multiple Return Values...... ... i e 174
11.4 Variable-length Argument Lists....... ... 182
11.5 Ignoring Argumentsi ittt 184
11.6 Variable-length Return Lists........ .. o i i 184
11.7 Returning from a Function........... ... i 185
11.8 Default Argumentst 186
11.9 Function Files 187
11.9.1 Manipulating the Load Path....... o i i 189
11.9.2 Subfunctions. 192
11.9.3 Private Functions. i i 192
11.9.4 Nested Functionso e 192
11.9.5 Overloading and Autoloading 195
11.9.6 Function Lockingo 196
11.9.7 Function Precedence............cooiiiiiiii 197
11.10 Script Files. .o 198
11.11 Function Handles, Anonymous Functions, Inline Functions 199
11.11.1 Function Handles.......... . 199
11.11.2 Anonymous Functions i 201
11.11.3 Inline Functions 202
1112 Commands oottt et e e 203
11.13 Organization of Functions Distributed with Octave........................ 203
12 Errors and Warnings..................... . oiiiiii. ... 205
12.1 Handling Errors 205
12.1.1 Raising Errors 205
12.1.2 Catching Errors. 208
12.1.3 Recovering From Errors........ ... i 211
12.2 Handling Warningsoouu it e 211
12.2.1 Issuing Warningsooooiiii e 211

12.2.2 Enabling and Disabling Warnings oot 217

13

14

15

Debugging ... 219
13.1 Entering Debug Mode 219
13.2 Leaving Debug Mode 220
13.3 Breakpoints 220
13.4 Debug Mode. 223
13.5 Call Stack 224
13.6 Profiling.o 225
13.7 Profiler Example. 227

Input and Output, 231
14.1 Basic Input and Output ... e 231

14.1.1 Terminal OQutpubo 231

14.1.1.1 Paging Screen OQutpub.ooiiiii e 234
14.1.2 Terminal Input . ..o 236
14.1.3 Simple File I/O ... oo 237

14.1.3.1 Saving Data on Unexpected Exits........ i, 246

14.2 C-Style I/O Functionsoouuiuiuiinii e 248

14.2.1 Opening and Closing Files i 248

14.2.2 Simple Output.o 250

14.2.3 Line-Oriented Input...... ... e 251

14.2.4 Formatted Outpuboouuiiii e 252

14.2.5 Output Conversion for Matrices. 253

14.2.6 Output Conversion Syntaxcooiuiiiiiiiiiiiienieann. 254

14.2.7 Table of Output Conversions.cooiuuiiiiiiiiniieennnee... 255

14.2.8 Integer COnversiONSottt e 256

14.2.9 Floating-Point Conversions.ccouiiiiiiiiiiniennennn.. 256

14.2.10 Other Output Conversionsuuuueeiiiteniieaaaee.n. 257

14.2.11 Formatted Input. ... 257

14.2.12 Input Conversion SyNtax.eeeitt e 259

14.2.13 Table of Input Conversions.uuurteemirre e, 259

14.2.14 Numeric Input Conversionsouvuuiteiiie i, 260

14.2.15 String Input Conversions.ot 261

14.2.16 Binary I/O ... oo 261

14.2.17 Temporary Files. 264

14.2.18 End of File and Errors........ ... 265

14.2.19 File Positioning. 266

Plotting 269
15.1 Introduction to Plotting 269
15.2 High-Level Plotting.o e 269

15.2.1 Two-Dimensional Plots o 269

15.2.1.1 Axis Configuration........... ..o, 297

15.2.1.2 Two-dimensional Function Plotting............. 299

15.2.1.3 Two-dimensional Geometric Shapes 302
15.2.2 Three-Dimensional Plots......... o i 303

15.2.2.1 Aspect Ratio.o 319

15.2.2.2 Three-dimensional Function Plotting 320

GNU Octave

15.2.2.3 Three-dimensional Geometric Shapes............... ..., 323
15.2.3 Plot Annotationst 325
15.2.4 Multiple Plots on One Page....... i, 331
15.2.5 Multiple Plot Windowso 333
15.2.6 Manipulation of Plot Objectso 333
15.2.7 Manipulation of Plot Windows............ 334
15.2.8 Use of the interpreter Propertyt 339
15.2.9 Printing and Saving Plots...... i 342
15.2.10 Interacting with Plots...... ... o i 348
15.2.11 Test Plotting Functions. ... 349

15.3 Graphics Data Structures. 350
15.3.1 Introduction to Graphics Structures............., 350
15.3.2 Graphics ObJectso 352

15.3.2.1 Creating Graphics Objects ... 352

15.3.2.2 Handle Functions i 355
15.3.3 Graphics Object Properties 360

15.3.3.1 Root Figure Properties.......... ... i i i 360

15.3.3.2 Figure Propertiescooiiiiii i 362

15.3.3.3 Axes Properties.oiii i 365

15.3.3.4 Line Properties 370

15.3.3.5 Text Properties 372

15.3.3.6 Image Properties........ ..o i 374

15.3.3.7 Patch Properties. 375

15.3.3.8 Surface Properties ... 377
15.3.4 Searching Properties......o i 380
15.3.5 Managing Default Properties........ i i 381

15.4 Advanced Plotting.o i 382
1541 COlOrS .o vttt 382
15.4.2 Line Styles. ... 382
15.4.3 Marker Styles. 383
15.4.4 Callbackso 383
15.4.5 Application-defined Data..............c i 384
15.4.6 ODJECt GIOUDPS . -« ot nte ettt et e e 385

15.4.6.1 Data Sources in Object Groups.covviiiiiiiiii ... 390

15.4.6.2 Area Seriest 390

15.4.6.3 Bar Seriesttt 391

15.4.6.4 Contour GrOUPS.vtt ittt 392

15.4.6.5 Error Bar Series 393

15.4.6.6 LANe SeTies.ottt 393

15.4.6.7 QUIVET GIOUD ...t ettt et et 394

15.4.6.8 Scatter GIrOUDvti ittt e 395

15.4.6.9 Stair GroUD vttt 395

15.4.6.10 Stem Seriest e 396

15.4.6.11 Surface Groupo e 397
15.4.7 Graphics ToolKitSot 397

15.4.7.1 Customizing Toolkit Behavior......... i 398

16 Matrix Manipulation................................ ... 399
16.1 Finding Elements and Checking Conditions, 399
16.2 Rearranging Matrices.c.oooiiiii i e 403
16.3 Special Utility Matrices e 412
16.4 Famous MatriCest e e 420

17 Arithmetic....... 429
17.1 Exponents and Logarithms 429
17.2 Complex Arithmetic e 431
17.3 TrigOnOmMEtTY . .o oottt 432
17.4 Sums and Products......... .o 436
17.5 Utility Functions e 437
17.6 Special Functions 445
17.7 Rational Approximationsoiuiiimt i 451
17.8 Coordinate Transformations i i i 452
17.9 Mathematical Constantst i e 453

18 Linear Algebra 457
18.1 Techniques Used for Linear Algebra........o i, 457
18.2 Basic Matrix Functionso i 457
18.3 Matrix Factorizations. ... 464
18.4 Functions of a Matrix.......o..oii i e 475
18.5 Specialized SOIVEIS. o 477

19 Vectorization and Faster Code Execution............ 481
19.1 Basic Vectorization 481
19.2 Broadcastingoouii i 483

19.2.1 Broadcasting and Legacy Code........ ... oo i, 486
19.3 Function Application 486
19.4 Accumulation. 491
19.5 JIT Compiler.o e 493
19.6 Miscellaneous Techniques e 494
19.7 EXAIPIES . 496

20 Nonlinear Equations 497
20,1 SOIVETS . .t 497

20.2 MINIMIZETS . .o oottt e e e e e e e 500

viii GNU Octave

21 Diagonal and Permutation Matrices.................. 503
21.1 Creating and Manipulating Diagonal /Permutation Matrices 503
21.1.1 Creating Diagonal Matrices 504
21.1.2 Creating Permutation Matrices........... ... i .. 504
21.1.3 Explicit and Implicit Conversionsooiiiiiiieiiieeann.. 505

21.2 Linear Algebra with Diagonal/Permutation Matrices....................... 506
21.2.1 Expressions Involving Diagonal Matrices 506
21.2.2 Expressions Involving Permutation Matrices........................... 507

21.3 Functions That Are Aware of These Matrices, 508
21.3.1 Diagonal Matrix Functions....... i i i 508
21.3.2 Permutation Matrix Functions oo i i 508

21.4 Examples of Usage. 508
21.5 Differences in Treatment of Zero Elements 509
22 Sparse Matrices L. 511
22.1 Creation and Manipulation of Sparse Matrices, 511
22.1.1 Storage of Sparse Matrices 511
22.1.2 Creating Sparse Matriceso 512
22.1.3 Finding Information about Sparse Matrices............................ 518
22.1.4 Basic Operators and Functions on Sparse Matrices 521
22.1.4.1 Sparse FUnctions.ooiuiiiiiit e 521

22.1.4.2 Return Types of Operators and Functions........................ 522

22.1.4.3 Mathematical Considerations..............ccooiiiiiiiiiii... 523

22.2 Linear Algebra on Sparse Matricesouiiiiiiiiii . 532
22.3 Iterative Techniques Applied to Sparse Matrices.............ccovvviiie..n. 540
22.4 Real Life Example using Sparse Matrices...........c.oiiiiiiiiinnninn.n. 548
23 Numerical Integration 553
23.1 Functions of One Variable i 553
23.2 Orthogonal Collocationuuii e 560
23.3 Functions of Multiple Variables i i 561
24 Differential Equations.................................. 563
24.1 Ordinary Differential Equations........ o i i, 563
24.2 Differential-Algebraic Equationso i i 565
25 Optimization................ 575
25.1 Linear Programming.uuuuutttttttetnnniiiiiiie e 575
25.2 Quadratic Programming 581
25.3 Nonlinear Programmingo 583

25.4 Linear Least SQUATESttt e 585

26 Statistics.............. . 589
26.1 Descriptive Statistics 589
26.2 Basic Statistical Functions........... .. o i 595
26.3 Statistical Plots 598
26.4 Correlation and Regression Analysis ..., 599
26.5 Distributionsooii i 601
26.6 TeStS . v e 609
26.7 Random Number Generation............ ..., 616

2T SetS . . 625
27.1 Set OPETationsttt ettt e ettt et et 625

28 Polynomial Manipulations............................. 629
28.1 Evaluating Polynomials......... .. . 629
28.2 Finding RoOtSt 630
28.3 Products of Polynomials........ 631
28.4 Derivatives / Integrals / Transforms, 634
28.5 Polynomial Interpolation......... 634
28.6 Miscellaneous Functionsoo i 643

29 Interpolation......... 645
29.1 One-dimensional Interpolation i i i 645
29.2 Multi-dimensional Interpolation........... i 649

30 Geometry 653
30.1 Delaunay Triangulation.......... ..o i i 653

30.1.1 Plotting the Triangulation o i i 655
30.1.2 Identifying Points in Triangulation............. 657
30.2 Voronoi Diagrams ...t e 659
30.3 Convex Hull.. ... 663
30.4 Interpolation on Scattered Data.................. 664

31 Signal Processing................. 667

32 Image Processing..................iiiiiiiiiiiiiiii.. 679
32.1 Loading and Saving Imagesouuteii it 679
32.2 Displaying Imageso e 685
32.3 Representing Images 686
32.4 Plotting on top of Images......... .o 695

32.5 Color CONVEISION . . ot v ottt et e e e e e e 695

X GNU Octave

33 Audio Processing.................iiiiiiiii 697
33.1 Audio File Utilitiesot 697
33.2 Audio Device Information........ ... i 698
33.3 Audio Playero 698

33.3.1 Playback ... 699
33.3.2 Propertiest 699
33.4 Audio Recorder. 700
33.4.1 Recording 700
33.4.2 Data Retrieval ... 700
33.4.3 Propertiest 701
33.5 Audio Data Processingo 701

34 Object Oriented Programming........................ 705
34.1 Creating a Class 705
34.2 Manipulating Classesoouitiii i e 707
34.3 Indexing ObJectst 710

34.3.1 Defining Indexing And Indexed Assignment 710
34.3.2 Indexed Assignment Optimization............, 714
34.4 Overloading Objects e 715
34.4.1 Function Overloading 715
34.4.2 Operator Overloading. 715
34.4.3 Precedence of Objects.o 716
34.5 Inheritance and Aggregationoiiiiii i 718

35 GUI Developmentiiiiiiiiii... 723
35.1 I/O DIalogs . ..ottt 723
35.2 Progress Bar 724
35.3 UL Elementsoooiiiiiii e 725
35.4 GUI Utility Functions 725
35.5 User-Defined Preferences...... ... i 727

36 System Utilities 731
36.1 Timing Utilitieso 731
36.2 Filesystem Utilitieso.ouoooi e 741
36.3 File Archiving Utilities.o e 750
36.4 Networking Utilities e e 753

36.4.1 FTP ODbJECtS .. vvvi it 753

36.4.2 URL Manipulation. ... 755

36.4.3 Base64 and Binary Data Transmission oo .. 756
36.5 Controlling SUbPIOCESSES. . ..ttt 756
36.6 Process, Group, and User IDs...... ... i 764
36.7 Environment Variables........ ... i 764
36.8 Current Working Directory 765
36.9 Password Database Functions.......... i 766
36.10 Group Database Functions.......... i 767
36.11 System Information........... ..o i 768

36.12 Hashing Functions.o i e 772

37 Java lInterface............. 773
37.1 Java Interface Functions i i 773
37.2 Dialog Box FUnctions. 779
37.3 FAQ - Frequently asked Questionsooiiiriiiiiinennienannn.. 781

37.3.1 How to distinguish between Octave and Matlab? 782
37.3.2 How to make Java classes available to Octave? 782
37.3.3 How to create an instance of a Java class?............... 783
37.3.4 How can I handle memory limitations? 784
37.3.5 Which TgX symbols are implemented in dialog functions? 784

38 Packages 787
38.1 [Installing and Removing Packages......... o i 787
38.2 Using Packages ... e 791
38.3 Administrating Packages. 791
38.4 Creating Packages 791

38.4.1 The DESCRIPTION Fileot 793
38.4.2 The INDEX File. e 795
38.4.3 PKG_ADD and PKG_DEL Directives............coiiiiiiiiiian.. 796
38.4.4 Missing COmMPONENESottt e 796

Appendix A External Code Interface.................... 799

AT Oct-Files. .o 800
A.1.1 Getting Started with Oct-Fileso i 800
A.1.2 Matrices and Arrays in Oct-Files i 803
A.1.3 Character Strings in Oct-Files.......... ..o i 806
A1.4 Cell Arrays in Oct-Files e 808
A.1.5 Structures in Oct-Files ... 808
A.1.6 Sparse Matrices in Oct-Files........ ..o, 810

A.1.6.1 Array and Sparse Class Differences 810

A.1.6.2 Creating Sparse Matrices in Oct-Files.......................... ... 811

A.1.6.3 Using Sparse Matrices in Oct-Files.......... 814
A.1.7 Accessing Global Variables in Oct-Files.............. 815
A.1.8 Calling Octave Functions from Oct-Files.......... 816
A.1.9 Calling External Code from Oct-Files.......... 817
A.1.10 Allocating Local Memory in Oct-Files 820
A.1.11 Input Parameter Checking in Oct-Files 820
A.1.12 Exception and Error Handling in Oct-Files 821
A.1.13 Documentation and Test of Oct-Files........... 823

A2 Mex-Files . ..o 824
A.2.1 Getting Started with Mex-Files........... i, 824
A.2.2 Working with Matrices and Arrays in Mex-Files........................ 826
A.2.3 Character Strings in Mex-Files i i 828
A.2.4 Cell Arrays with Mex-Files i 829
A.2.5 Structures with Mex-Files i 830
A.2.6 Sparse Matrices with Mex-Files........... i i, 832
A.2.7 Calling Other Functions in Mex-Files........... 835

A.3 Standalone Programs......... ... 836

xii GNU Octave

Appendix B Test and Demo Functions.................. 839
Bl Test FUNCLIONSottt e 839
B.2 Demonstration Functions.......... ... i i i 846

Appendix C Tips and Standards......................... 851
C.1 Writing Clean Octave Programsooiuiiiiiieenineinineannn. 851
C.2 Tips on Writing COmmMEentsuuuut it 851
C.3 Conventional Headers for Octave Functions............, 852
C.4 Tips for Documentation Stringscoiiiiiiiiiiiiiiiniian. 853

Appendix D Contributing Guidelines................. ... 861
D.1 How to Contribute e e 861
D.2 Building the Development Sources.c.ooiiiiiiiiinienieann.. 861
D.3 Basics of Generating a Changeset. ..., 861
D.4 General Guidelinest 863
D.5 Octave Sources (m-files)...... ... 864
D6 G SOUTCES .« ottt 865
D.7 Other SOUTCESottt e e e e e e 866

Appendix E Obsolete Functions 867

Appendix F Known Causes of Trouble.................. 871
F.1 Actual Bugs We Haven’t Fixed Yeto, 871
F.2 Reporting Bugsot 871

F.2.1 Have You Found a Bug? i 871
F.2.2 Where to Report Bugs........ ... i 872
F.2.3 How to Report Bugs........ ... 872
F.2.4 Sending Patches for Octave......... i i 873
F.3 How To Get Help with Octave......... ... i i 874

Appendix G Installing Octave............................ 875

G.1 Build Dependenciesooiniiii 875
G.1.1 Obtaining the Dependencies Automatically 875
G.1.2 Build ToOIS . ..o ot 875
G.1.3 External Packages. ... 876

G.2 Running Configure and Make........ ... i i i 878

G.3 Compiling Octave with 64-bit Indexing 882

G.4 Installation Problems. 885

Appendix H Emacs Octave Support..................... 889
H.1 Installing EOS ..o o 889
H.2 Using Octave Mode e 889
H.3 Running Octave from Within Emacs........... 893

H.4 Using the Emacs Info Reader for Octave...........ot 894

Appendix 1 Grammar and Parser....................... 897
LT KeyWords . . oot 897
L2 ParSeT . oo 897

Appendix J GNU GENERAL PUBLIC LICENSE 899
Concept Index 911
Function Index 921

Operator Index 935

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been
used in several other undergraduate and graduate courses in the Chemical Engineering
Department at the University of Texas, and the math department at the University of
Texas has been using it for teaching differential equations and linear algebra as well. More
recently, Octave has been used as the primary computational tool for teaching Stanford’s
online Machine Learning class (ml-class.org) taught by Andrew Ng. Tens of thousands
of students participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix J [Copying], page 899). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Drew Abbot Andy Adler
Adam H. Aitkenhead Giles Anderson Joel Andersson
Lachlan Andrew Pedro Angelo Muthiah Annamalai
Markus Appel Branden Archer Willem Atsma
Marco Atzeri Shai Ayal Roger Banks
Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Julien Bect Stefan Beller
Roman Belov Markus Bergholz Karl Berry
David Billinghurst Don Bindner Jakub Bogusz
Moritz Borgmann Paul Boven Richard Bovey
John Bradshaw Marcus Brinkmann Max Brister

Remy Bruno Clemens Buchacher Ansgar Burchard

ml-class.org

Marco Caliari

Juan Pablo Carbajal
Larrie Carr

Clinton Chee
Catalin Codreanu
Michael Creel
Martin Dalecki
Carlo de Falco

Bill Denney

Pantxo Diribarne
David M. Doolin
John W. Eaton

Paul Eggert
Edmund Grimley Evans
Massimiliano Fasi
Torsten Finke

Brad Froehle

Walter Gautschi
Fugenio Gianniti
Michael D. Godfrey
Tomislav Goles
Michael C. Grant
David Grundberg
Peter Gustafson
William P. Y. Hadisoeseno
Kim Hansen

Daniel Heiserer
Martin Hepperle
Ryan Hinton
Richard Allan Holcombe
Kurt Hornik

John Hunt

Allan Jacobs

Mats Jansson
Heikki Junes

Jarkko Kaleva

Lute Kamstra

Joel Keay

Aaron A. King
Alexander Klein
Ken Kouno

Nir Krakauer

Artem Krosheninnikov
Ilya Kurdyukov
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie

Daniel Calvelo
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young
J. D. Cole

Richard Crozier
Jacob Dawid
Thomas D. Dean
Fabian Deutsch
Vivek Dogra

Carn Draug

Dirk Eddelbuettel
Stephen Eglen

Rolf Fabian
Stephen Fegan
Colin Foster

Castor Fu

Klaus Gebhardt
Nicolo Giorgetti
Michael Goffioul
Keith Goodman
Steffen Groot

Kyle Guinn

Kai Habel

Jaroslav Hajek

Sren Hauberg
Martin Helm

Jordi Gutirrez Hermoso
Roman Hodek

Tom Holroyd
Christopher Hulbert
Teemu Tkonen

Geoff Jacobsen

Cai Jianming
Matthias Jschke
Avinoam Kalma
Fotios Kasolis
Mumit Khan

Erik Kjellson
Geoffrey Knauth
Kacper Kowalik
Aravindh Krishnamoorthy
Piotr Krzyzanowski
Tetsuro Kurita
Rafael Laboissiere
Walter Landry
Maurice LeBrun

GNU Octave

John C. Campbell
Joao Cardoso
Vincent Cautaerts
Carsten Clark
Martin Costabel

Jeff Cunningham
Jorge Barros de Abreu
Philippe Defert
Christos Dimitrakakis
John Donoghue
Pascal A. Dupuis
Pieter Eendebak
Peter Ekberg

Gunnar Farnebck
Ramon Garcia Fernandez
Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab

Arun Giridhar

Glenn Golden

Brian Gough

Etienne Grossmann
Vaibhav Gupta
Patrick Hcker
Benjamin Hall

Dave Hawthorne
Stefan Hepp

Yozo Hida

A. Scottedward Hodel
David Hoover

Cyril Humbert

Alan W. Irwin
Vytautas Janauskas
Steven G. Johnson
Atsushi Kajita
Mohamed Kamoun
Thomas Kasper

Paul Kienzle

Arno J. Klaassen
Heine Kolltveit
Daniel Kraft

Oyvind Kristiansen
Volker Kuhlmann
Philipp Kutin

Kai Labusch

Bill Lash

Friedrich Leisch

Preface

Johannes Leuschner
Timo Lindfors
David Livings
Massimo Lorenzin
Hoxide Ma
Jens-Uwe Mager
Alexander Mamonov
Axel Mathi
Christoph Mayer
Ronald van der Meer
Thorsten Meyer
Mike Miller

Antoine Moreau
Victor Munoz

Carmen Navarrete
Al Niessner
Takuji Nishimura
Eric Norum

Peter O’Gorman
Arno Onken

Carl Osterwisch
Jason Alan Palmer
Rolando Pereira
Jim Peterson
Elias Pipping
Sergey Plotnikov
Orion Poplawski
Francesco Potort
Eduardo Ramos
Eric S. Raymond
Lukas Reichlin
Anthony Richardson
Sander van Rijn
Peter Rosin

Mark van Rossum
Kristian Rumberg
Toni Saarela

Mike Sander
Alois Schlgl
Sebastian Schoeps
Lasse Schuirmann
Daniel J. Sebald
Marko Seric
Andriy Shinkarchuck
John Smith

Thorsten Liebig
Benjamin Lindner
Sebastien Loisel
Emil Lucretiu
Colin Macdonald
Stefan Mahr
Ricardo Marranita
Makoto Matsumoto
Laurent Mazet

Jlio Hoffimann Mendes
Stefan Miereis
Serviscope Minor
Kai P. Mueller
PrasannaKumar
Muralidharan
Todd Neal

Felipe G. Nievinski
Kai Noda
Krzesimir Nowak
Thorsten Ohl

Valentin Ortega-Clavero

Janne Olavi Paanajrvi
Gabriele Pannocchia
Per Persson

Danilo Piazzalunga
Robert Platt

Tom Poage

Ondrej Popp
Konstantinos Poulios
Pooja Rao

Balint Reczey
Michael Reifenberger
Jason Riedy

Petter Risholm
Andrew Ross

Joe Rothweiler

Ryan Rusaw

Juhani Saastamoinen
Ben Sapp

Michel D. Schmid
Nicol N. Schraudolph
Ludwig Schwardt
Dmitri A. Sergatskov
Ahsan Ali Shahid
Robert T. Short
Julius Smith

Jyh-miin Lin
Ross Lippert

Erik de Castro Lopo
Yi-Hong Lyu
James Macnicol
Rob Mahurin
Orestes Mas
Tatsuro Matsuoka
G. D. McBain

Ed Meyer

Petr Mikulik
Stefan Monnier
Hannes Mller

Tain Murray

Philip Nienhuis
Rick Niles

Patrick Noffke
Michael O’Brien
Kai T. Ohlhus
Luis F. Ortiz

Scott Pakin
Sylvain Pelissier
Primozz Peterlin
Nicholas Piper
Hans Ekkehard Plesser
Nathan Podlich
Jef Poskanzer
Jarno Rajahalme
James B. Rawlings
Joshua Redstone
Jens Restemeier

E. Joshua Rigler
Matthew W. Roberts
Fabio Rossi

Kevin Ruland

Olli Saarela

Radek Salac
Aleksej Saushev
Julian Schnidder
Sebastian Schubert
Thomas L. Scofield
Vanya Sergeev
Baylis Shanks
Joseph P. Skudlarek
Shan G. Smith

Peter L. Sondergaard
Christoph Spiel
Russell Standish
Jonathan Stickel
Ivan Sutoris

Ariel Tankus
Matthew Tenny
Corey Thomasson
Thomas Treichl
Frederick Umminger
Peter Van Wieren
Gregory Vanuxem
Sbastien Villemot
Thomas Walter
Thomas Weber
Andreas Weingessel
David Wells

Sean Young
Federico Zenith

Joerg Specht

David Spies

Brett Stewart

Judd Storrs

John Swensen

Falk Tannhuser
Kris Thielemans
Olaf Till

Karsten Trulsen
Utkarsh Upadhyay
James R. Van Zandt
Mihas Varantsou
Marco Vitetta
Andreas Weber

Rik Wehbring
Martin Weiser
Joachim Wiesemann
Johannes Zarl

Alex Zvoleff

GNU Octave

Quentin H. Spencer
Richard Stallman
Doug Stewart
Thomas Stuart
Daisuke Takago
Duncan Temple Lang
Georg Thimm
Christophe Tournery
David Turner

Stefan van der Walt
Risto Vanhanen
Ivana Varekova
Daniel Wagenaar
Olaf Weber

Bob Weigel

Michael Weitzel
Fook Fah Yap
Michael Zeising

Special thanks to the following people and organizations for supporting the development

of Octave:

e The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

http://www.che.utexas.edu/twmcc
octave.org

Preface 5

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to
produce Octave.

Citing Octave in Publications

In view of the many contributions made by numerous developers over many years it is
common courtesy to cite Octave in publications when it has been used during the course of
research or the preparation of figures. The citation function can automatically generate
a recommended citation text for Octave or any of its packages. See the help text below on
how to use citation.

citation [Command]|
citation package [Command]|
Display instructions for citing GNU Octave or its packages in publications.

When called without an argument, display information on how to cite the core GNU
Octave system. When given a package name package, display information on citing
the specific named package. Note that some packages may not yet have instructions
on how to cite them.

The GNU Octave developers and its active community of package authors have in-
vested a lot of time and effort in creating GNU Octave as it is today. Please give
credit where credit is due and cite GNU Octave and its packages when you use them.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See Appendix D
[Contributing Guidelines|, page 861, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at
https://my.fsf.org/donate/working-together/octave. These donations also help to
support the Free Software Foundation

If you’d prefer to pay by check or money order, you can do so by sending a check to the
FSF at the following address:

Free Software Foundation

51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

If you pay by check, please be sure to write “GNU Octave” in the memo field of your check.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to

https://my.fsf.org/donate/working-together/octave

6 GNU Octave

improve Octave. See Appendix F [Trouble], page 871, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix J [Copying], page 899.

To download a copy of Octave, please visit http://www.octave.org/download.html.

http://www.octave.org/download.html

Chapter 1: A Brief Introduction to Octave 7

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It is
typically used for such problems as solving linear and nonlinear equations, numerical linear
algebra, statistical analysis, and for performing other numerical experiments. It may also
be used as a batch-oriented language for automated data processing.

Until recently GNU Octave provided a command-line interface with graphical results
displayed in separate windows. The current version (version 3.8, released in late 2013) also
provides, by default, a graphical user interface.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual, see Appendix J [Copying|, page 899.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 4.0.0-rc2.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. This, by default,
starts the graphical user interface (GUI). The central window in the GUI is the Octave
command-line interface. Octave displays an initial message and then a prompt indicating
it is ready to accept input. If you have chosen the traditional command-line interface only
the command prompt appears. In any case, you can immediately begin typing Octave
commands.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL
and then pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’) are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation ("), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of

8 GNU Octave

the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

e =-1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp (i*pi)

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A *x B

and to form the matrix product ATA, type the command

octave:6> A’ *x A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\D

This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

Chapter 1: A Brief Introduction to Octave 9

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

Hy; + O, — H,0O

The equation above is not accurate. The Law of Conservation of Mass requires that the num-
ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

I‘ng + 113‘202 — HQO
H: 221 4+ 0xy — 2
O: 01’1 + 21’2 —1

The solution in Octave is found in just three steps.

[2, 0; 0, 21;
[2;11;
A\Db

octave:1> A
octave:2> b
octave:3> x

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

dzx

E:f(x,t), x(t=ty) = xo

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

Ao o rH
I
coorroO
ST
N

xdot (1)
xdot (2)

rxx(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
cxaxx (1) *x(2)/(1 + bxx(1)) - d*x(2);

V VV V V V V V VYV

>
> endfunction

Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

10 GNU Octave

octave:3> t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);

The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55—64.

1.2.6 Producing Graphical Output
To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsu-
lated PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual,
see Section 2.4 [Command Line Editing], page 25.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. This name of the function may not always be obvious, but a good place to start is to
type help —-list. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function. This function is described in Section 2.3
[Getting Help], page 20.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

Chapter 1: A Brief Introduction to Octave 11

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a RET to advance one line, a SPC to advance one page, and Q to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual, see Section 2.3 [Getting Help], page 20.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
--bar --baz. Specific keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation
In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=". For example:

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this

eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:
rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

12 GNU Octave

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘ 4’. The value that is returned
by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.
printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages
Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: Invalid input argument

1.3.5 Format of Descriptions

Functions and commands are described in this manual in a uniform format. The first line of a
description contains the name of the item followed by its arguments, if any. The category—
function, command, or whatever—is printed next to the right margin. The description
follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

foo (x) [Function File]
foo (x,y) [Function File]
foo (x,y,...) [Function File]

The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.
foo (1, [3, 5], 3, 9)
= [14, 16]
foo (5)
= 14

More generally,

foo (w, %, y, ...)

X -w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Chapter 1: A Brief Introduction to Octave 13

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.9 [Function Files|, page 187.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [External Code Interface], page 799.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

cd dir [Command]

chdir dir [Command]
Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘“/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

Chapter 2: Getting Started 15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--built-in-docstrings-file filename
Specify the name of the file containing documentation strings for the built-in
functions of Octave. This value is normally correct and should only need to
specified in extraordinary situations.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--debug-jit

Enable JIT compiler debugging and tracing.

-—doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless ‘--persist’ is also specified.

—--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

16 GNU Octave

--force-gui
Force the graphical user interface (GUI) to start.

--help
-h
-7 Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in
the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

—-—info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix H [Emacs Octave Support], page 889.

--jit-compiler

Enable the JIT compiler used for accelerating loops.
--line-editing

Force readline use for command-line editing.

--no-gui Disable the graphical user interface (GUI) and use the command line interface
(CLI) instead.

--no-history
-H Disable recording of command-line history.
--no-init-file

Don’t read the initialization files ‘*/.octaverc’ and ‘.octaverc’.
--no-init-path

Don’t initialize the search path for function files to include default locations.
--no-line-editing

Disable command-line editing.
--no-site-file

Don’t read the site-wide ‘octaverc’ initialization files.

Chapter 2: Getting Started 17

--no-window-system
-W Disable use of a windowing system including graphics. This forces a strictly
terminal-only environment.

--norc
-f Don’t read any of the system or user initialization files at startup. This is equiv-

alent to using both of the options ‘--no-init-file’ and ‘--no-site-file’.
--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist

¢

Go to interactive mode after
command line.

--eval’ or reading from a file named on the

--silent
--quiet
-q Don’t print the usual greeting and version message at startup.

--texi-macros-file filename
Specify the name of the file containing Texinfo macros for use by makeinfo.

-—traditional

—--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

PS1 = ">> "

pPS2 = "
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
disable_diagonal _matrix = true
disable_permutation_matrix = true
disable_range = true
fixed_point_format = true
history_timestamp_format_string = "%%-— %D %I:%M %p —=%h"
page_screen_output = false
print_empty_dimensions = false
save_default_options = "-mat-binary"

struct_levels_to_print 0

and disable the following warnings

Octave:abbreviated-property-match
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path
Octave:possible-matlab-short-circuit-operator

18 GNU Octave
Note that this does not enable the Octave:language-extension warning,
which you might want if you want to be told about writing code that works in
Octave but not MATLAB (see [warning], page 212, [warning_ids], page 213).

--verbose

-V Turn on verbose output.

--version

-v Print the program version number and exit.

file Execute commands from file. Exit when done unless ‘--persist’ is also speci-

fied.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv () [Built-in Function]

Return the command line arguments passed to Octave.
For example, if you invoked Octave using the command

octave ——-no-line-editing --silent
argv would return a cell array of strings with the elements ‘--no-line-editing’ and
‘--silent’.
If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 35, for an example
of how to create an executable Octave script.

program_name () [Built-in Function]

Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_-name|, page 18.

program_invocation_name () [Built-in Function]

Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs|, page 35, for an example of how to create
an executable Octave script.

See also: [program_name|, page 18.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());
arg_list = argv O;
for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

See Section 6.2.3 [Indexing Cell Arrays|, page 116, for an explanation of how to retrieve
objects from cell arrays, and Section 11.2 [Defining Functions|, page 171, for information
about the variable nargin.

Chapter 2: Getting Started 19

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘~/.octaverc’. Any use of the cd command in the ‘~/.octaverc’ file
will affect the directory where Octave searches for ‘.octaverc’.

If you start Octave in your home directory, commands from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the ‘--verbose’ option but without the ‘--silent’ option.

2.2 Quitting Octave

Shutdown is initiated with the exit or quit commands (they are equivalent). Similar
to startup, Octave has a shutdown process that can be customized by user script files.
During shutdown Octave will search for the script file ‘finish.m’ in the function load path.
Commands to save all workspace variables or cleanup temporary files may be placed there.
Additional functions to execute on shutdown may be registered with atexit.

exit [Built-in Function]
exit (status) [Built-in Function]
quit [Built-in Function]
quit (status) [Built-in Function]
Exit the current Octave session.
If the optional integer value status is supplied, pass that value to the operating system
as Octave’s exit status. The default value is zero.

20 GNU Octave

When exiting, Octave will attempt to run the m-file ‘finish.m’ if it exists. User
commands to save the workspace or clean up temporary files may be placed in that
file. Alternatively, another m-file may be scheduled to run using atexit.

See also: [atexit], page 20.

atexit (fcn) [Built-in Function]
atexit (fcn, flag) [Built-in Function]
Register a function to be called when Octave exits.

For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);

will remove the function from the list and Octave will not call 1last_words when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a
function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

See also: [quit|, page 19.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.9 [Function Files], page 187, for more information about how to document the
functions you write.

help name [Command]|
help --list [Command]|
help . [Command]|
help [Command]|

Display the help text for name.

For example, the command help help prints a short message describing the help
command.

Given the single argument --1list, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

Chapter 2: Getting Started 21

Given the single argument ., list all operators available in the current session of
Octave.

If invoked without any arguments, help display instructions on how to access help
from the command line.

The help command can provide information about most operators, for example help
+, but not the comma and semicolon characters which are used by the Octave inter-
preter as command separators. For help on either of these type help comma or help
semicolon.

See also: [doc], page 21, [lookfor], page 21, [which], page 132, [info], page 22.

doc function_name [Command|
Display documentation for the function function_name directly from an online ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the online version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 20.

lookfor str [Command]|
lookfor -all str [Command|
[func, helpstring] = lookfor (str) [Function File]

]

[func, helpstring] lookfor ("-all", str) [Function File
Search for the string str in all functions found in the current function search path.
By default, lookfor searches for str in the first sentence of the help string of each
function found. The entire help text of each function can be searched if the "-all"
argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise, the output arguments func and helpstring define the matching
functions and the first sentence of each of their help strings.

The ability of lookfor to correctly identify the first sentence of the help text is
dependent on the format of the function’s help. All Octave core functions are cor-
rectly formatted, but the same can not be guaranteed for external packages and
user-supplied functions. Therefore, the use of the "-all" argument may be necessary
to find related functions that are not a part of Octave.

See also: [help], page 20, [doc], page 21, [which], page 132.
To see what is new in the current release of Octave, use the news function.

news [Command]|
news package [Command]
Display the current NEWS file for Octave or an installed package.

When called without an argument, display the NEWS file for Octave. When given a
package name package, display the current NEWS file for that package.

See also: [ver], page 770, [pkg], page 787.

22 GNU Octave

info () [Function File]
Display contact information for the GNU Octave community.

warranty () [Built-in Function]
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file () [Built-in Function]
old_val = info_file (new_val) [Built-in Function]
info_file (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the Octave info file. The
default value is ‘octave-home/info/octave.info’, in which octave-home is the root
directory of the Octave installation. The default value may be overridden by the en-
vironment variable OCTAVE_INFO_FILE, or the command line argument ‘--info-file
FNAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_program]|, page 22, [doc], page 21, [help], page 20, [makeinfo_program],

page 22.
val = info_program () [Built-in Function]
old_val = info_program (new_val) [Built-in Function]
info_program (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the info program to run.
The default value is ‘octave-home/libexec/octave/version/exec/arch/info’
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument ‘--info-program
NAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_file|, page 22, [doc|, page 21, [help], page 20, [makeinfo_program],

page 22.
val = makeinfo_program () [Built-in Function]
old_val = makeinfo_program (new_val) [Built-in Function]
makeinfo_program (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands. The default value is
makeinfo.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Chapter 2: Getting Started 23

See also: [texi_macros_file], page 23, [info_file], page 22, [info_program]|, page 22, [doc],
page 21, [help], page 20.

val = texi_macros_file () [Built-in Function]
old_val = texi_macros_file (new_val) [Built-in Function]
texi_macros_file (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the file
containing Texinfo macros that are prepended to documentation strings
before they are passed to makeinfo. The default value is ‘octave-
home /share/octave/version/etc/macros.texi’, in which octave-home is
the root directory of the Octave installation, and version is the Octave version
number. The default value may be overridden by the environment variable
OCTAVE_TEXI_MACROS_FILE, or the command line argument ‘--texi-macros-file
FNAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [makeinfo_program]|, page 22.

val = doc_cache_file () [Built-in Function]
old_val = doc_cache_file (new_val) [Built-in Function]
doc_cache_file (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the Octave documentation
cache file. A cache file significantly improves the performance of the lookfor com-
mand. The default value is ‘octave-home /share/octave/version/etc/doc-cache’,
in which octave-home is the root directory of the Octave installation, and version is the
Octave version number. The default value may be overridden by the environment vari-
able OCTAVE_DOC_CACHE_FILE, or the command line argument ‘--doc-cache-file
FNAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [doc_cache_create], page 24, [lookfor], page 21, [info_program], page 22,
[doc], page 21, [help], page 20, [makeinfo_program]|, page 22.

val = built_in_docstrings_file () [Built-in Function]
old_val = built_in_docstrings_file (new_val) [Built-in Function]
built_in_docstrings_file (new_val, "local") [Built-in Function]
Query or set the internal variable that specifies the name of the file containing
docstrings for built-in Octave functions. The default wvalue is ‘octave-

home /share/octave/version/etc/built-in-docstrings’, in which octave-home
is the root directory of the Octave installation, and version is the Octave
version number. The default value may be overridden by the environment
variable OCTAVE_BUILT_IN_DOCSTRINGS_FILE, or the command line argument
‘~—built-in-docstrings-file FNAME’.

Note: This variable is only used when Octave is initializing itself. Modifying it during
a running session of Octave will have no effect.

24 GNU Octave

val = suppress_verbose_help_message () [Built-in Function]
old_val = suppress_verbose_help_message (new_val) [Built-in Function]
suppress_verbose_help_message (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-
mentation. They are documented here for completeness and because they may occasionally
be useful for users.

doc_cache_create (out_file, directory) [Function File]
Generate documentation caches for all functions in a given directory.

A documentation cache is generated for all functions in directory. The resulting cache
is saved in the file out_file. The cache is used to speed up lookfor.

If no directory is given (or it is the empty matrix), a cache for built-in operators, etc.
is generated.

See also: [doc_cache_file], page 23, [lookfor|, page 21, [path], page 190.

[text, format] = get_help_text (name) [Built-in Function]
Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[text, format] = get_help_text_from_file (fname) [Built-in Function]
Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[text, status] = get_first_help_sentence (name) [Function File]
[text, status] = get_first_help_sentence (name, max_len) [Function File]
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_Ilen, which defaults to 80.

The optional output argument status returns the status reported by makeinfo. If
only one output argument is requested, and status is nonzero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
-1 ans = Return the first sentence of a function’s help text.

Chapter 2: Getting Started 25

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down CTRL and then press A. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press U. Depending on the keyboard, the META key may be
labeled ALT or even WINDOWS. If your terminal does not have a META key, you can
still type Meta characters using two-character sequences starting with ESC. Thus, to enter
M-u, you would type ESC U. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written
as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
Cc-f Move forward one character.
BACKSPACE
Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
Cc-d Delete the character underneath the cursor.
M-f Move forward a word.
M-b Move backward a word.
C-a Move to the start of the line.
C-e Move to the end of the line.
Cc-1 Clear the screen, reprinting the current line at the top.
C-_
c-/ Undo the last action. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

26 GNU Octave

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.
clc () [Built-in Function]

home () [Built-in Function]
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,

also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

Chapter 2: Getting Started 27

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word
if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]

old_val = completion_append_char (new_val) [Built-in Function]

completion_append_char (new_val, "local") [Built-in Function]
Query or set the internal character variable that is appended to successful command-
line completion attempts. The default value is " " (a single space).

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

completion_matches (hint) [Built-in Function]
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

28 GNU Octave

M—< Move to the first line in the history.
M-> Move to the end of the input history, i.e., the line you are entering!
C-r Search backward starting at the current line and moving ‘up’ through the his-

tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the
history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history [Command|
history optl ... [Command]
h = history () [Built-in Function]
h = history (opti, ...) [Built-in Function]

If invoked with no arguments, history displays a list of commands that you have
executed. Valid options are:

n
-n Display only the most recent n lines of history.

-c Clear the history list.

-q Don’t number the displayed lines of history. This is useful for cutting and

pasting commands using the X Window System.

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ‘~/.octave_hist’).

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ‘~/.octave_hist’).

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

If invoked with a single output argument, the history will be saved to that argument
as a cell string and will not be output to screen.

edit_history [Command]
edit_history cmd_number [Command]|
edit_history first last [Command]|

Edit the history list using the editor named by the variable EDITOR.

The commands to be edited are first copied to a temporary file. When you exit
the editor, Octave executes the commands that remain in the file. It is often more
convenient to use edit_history to define functions rather than attempting to enter
them directly on the command line. The block of commands is executed as soon as
you exit the editor. To avoid executing any commands, simply delete all the lines
from the buffer before leaving the editor.

Chapter 2: Getting Started 29

When invoked with no arguments, edit the previously executed command; With one
argument, edit the specified command cmd_number; With two arguments, edit the
list of commands between first and last. Command number specifiers may also be
negative where -1 refers to the most recently executed command. The following are
equivalent and edit the most recently executed command.

edit_history
edit_history -1

When using ranges, specifying a larger number for the first command than the last
command reverses the list of commands before they are placed in the buffer to be
edited.

See also: [run_history], page 29.

run_history [Command]|
run_history cmd_number [Command]
run_history first last [Command]|

Run commands from the history list.

When invoked with no arguments, run the previously executed command; With one
argument, run the specified command cmd_number; With two arguments, run the
list of commands between first and last. Command number specifiers may also be
negative where -1 refers to the most recently executed command. For example, the
command

run_history
OR
run_history -1

executes the most recent command again. The command
run_history 13 169
executes commands 13 through 169.

Specifying a larger number for the first command than the last command reverses the
list of commands before executing them. For example:

disp (1)
disp (2)
run_history -1 -2
=

2

1

See also: [edit_history], page 28.

Octave also allows you customize the details of when, where, and how history is saved.

val = history_save () [Built-in Function]
old_val = history_save (new_val) [Built-in Function]
history_save (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

30 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history_control], page 30, [history_file], page 30, [history_size|, page 30,
[history_timestamp_format_string], page 30.

val = history_control () [Built-in Function]

old_val = history_control (new_val) [Built-in Function]
Query or set the internal variable that specifies how commands are saved to the
history list. The default value is an empty character string, but may be overridden
by the environment variable OCTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of history_save.

See also: [history_file], page 30, [history_size|, page 30, [history_timestamp_format_string] Jj
page 30, [history_save|, page 29.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store
command history. The default value is ‘“/.octave_hist’, but may be overridden by
the environment variable OCTAVE_HISTFILE.

See also: [history_size|, page 30, [history_save], page 29, [history_timestamp_format_string]]

page 30.
val = history_size () [Built-in Function]
old_val = history_size (new_val) [Built-in Function]

Query or set the internal variable that specifies how many entries to store in the
history file. The default value is 1000, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

See also: [history_file], page 30, [history_timestamp_format_string|, page 30,
[history_save|, page 29.

val = history_timestamp_format_string () [Built-in Function]
old_val = history_timestamp_format_string (new_val) [Built-in Function]
history_timestamp_format_string (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits. The format string is passed
to strftime. The default value is

Chapter 2: Getting Started 31

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 733, [history_file], page 30, [history_size], page 30,
[history_save|, page 29.

val = EDITOR () [Built-in Function]
old_val = EDITOR (new_val) [Built-in Function]
EDITOR (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the default text editor.

The default value is taken from the environment variable EDITOR when Octave starts.
If the environment variable is not initialized, EDITOR will be set to "emacs".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [edit], page 187, [edit_history], page 28.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ‘~/.inputrc’.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

readline_read_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default
initialization file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library, for details.
See also: [readline_re_read_init_file], page 31.
readline_re_read_init_file () [Built-in Function]

Re-read the last readline library initialization file that was read. See Section “Readline
Init File” in GNU Readline Library, for details.

See also: [readline_read_init_file], page 31.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

‘\t’ The time.
A\d’ The date.

32 GNU Octave
“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.
‘\s’ The name of the program (usually just ‘octave’).
Aw’ The current working directory.
AW The basename of the current working directory.
\u’ The username of the current user.
‘\h’ The hostname, up to the first ‘..
\H’ The hostname.
A# The command number of this command, counting from when Octave starts.
A\ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.
¢’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.
‘\nnn’ The character whose character code in octal is nnn.
AN A backslash.
val = PS1 () [Built-in Function]
old_val = PS1 (new_val) [Built-in Function]
PS1 (new_val, "local") [Built-in Function]
Query or set the primary prompt string. When executing interactively, Octave dis-
plays the primary prompt when it is ready to read a command.
The default value of the primary prompt string is "octave:\#> ". To change it, use
a command like
PS1 ("\\u@\\H> ")
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 67.
You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,
PS1 ("\\[\\033[01;31m\\1\\s:\\#> \\[\\033[Om\\1")
will give the default Octave prompt a red coloring.
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.
See also: [PS2], page 32, [PS4], page 33.
val = PS2 () [Built-in Function]
old_val = PS2 (new_val) [Built-in Function]
PS2 (new_val, "local") [Built-in Function]

Query or set the secondary prompt string. The secondary prompt is printed when
Octave is expecting additional input to complete a command. For example, if you are
typing a for loop that spans several lines, Octave will print the secondary prompt at

Chapter 2: Getting Started 33

the beginning of each line after the first. The default value of the secondary prompt
string is "> ".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS1], page 32, [PS4], page 33.

val = PS4 () [Built-in Function]
old_val = PS4 (new_val) [Built-in Function]
PS4 (new_val, "local") [Built-in Function]

Query or set the character string used to prefix output produced when echoing com-
mands is enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo
Commands]|, page 33, for a description of echoing commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [echo|, page 33, [echo_executing_commands|, page 34, [PS1], page 32, [PS2],
page 32.
2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

diary [Command]
diary on [Command]
diary off [Command]
diary filename [Command]

Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called ‘diary’ in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.
With no arguments, diary toggles the current diary state.

See also: |history], page 28.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo options [Command]
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.

of f Disable echoing of commands as they are executed in script files.

34 GNU Octave

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

val = echo_executing_commands () [Built-in Function]
old_val = echo_executing_commands (new_val) [Built-in Function]
echo_executing_commands (new_val, "local") [Built-in Function]

Query or set the internal variable that controls the echo state. It may be the sum of
the following values:

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option ‘--echo-commands’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,
octave:13> function y = £ (x) y = x***2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function y = £ (x) y = x***2; endfunction

For most parse errors, Octave uses a caret (‘*’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time

errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,

you type

Chapter 2: Getting Started 35

octave:13> f ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function f. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘“#!” script mechanism. You can do this on GNU systems and on many Unix systems!.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
‘hello’, containing the following lines:

#! octave-interpreter—-name -qf

a sample Octave program

printf ("Hello, world!\n");
(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!” appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

36 GNU Octave

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full file name of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s ‘~/.octaverc’ file. See Section 2.1 [Invoking
Octave from the Command Line], page 15.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter—-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"

which will produce an error message. Unfortunately, it is not possible for Octave to deter-
mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave
script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("%s", program_name ());
arg_list = argv ();
for i = 1l:nargin

printf (" %s", arg_list{i});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

Chapter 2: Getting Started 37

function countdown

Count down for main rocket engines

disp (3);

disp (2);

disp (1);

disp ("Blast Off!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘#} or ‘%{ and ‘%} markers. For example,

function quick_countdown
Count down for main rocket engines
disp (3);
#{
disp (2);
disp (1);
#}
disp ("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from ’3’ to "Blast Off" as the lines "disp (2);"
and "disp (1) ;" won’t be executed.

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help]|, page 20) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function £ below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

r = 0.25;
endfunction

the command help f produces the output

38 GNU Octave

usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments|, page 36) and not block comments for the initial help text.

Chapter 3: Data Types 39

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
S0 it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[External Code Interface], page 799, for more information about Octave’s dynamic linking
capabilities. Section 3.2 [User-defined Data Types|, page 44 describes what you must do to
define a new data type for Octave.

typeinfo () [Built-in Function]

typeinfo (expr) [Built-in Function]
Return the type of the expression expr, as a string. If expr is omitted, return a cell
array of strings containing all the currently installed data types.

See also: [class], page 39, [isa], page 39.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

classname = class (obj) [Function File]
class (s, id) [Function File]
class (s, id, p, .. .) [Function File]

Return the class of the object obj or create a class with fields from structure s and
name (string) id. Additional arguments name a list of parent classes from which the
new class is derived.

See also: [typeinfo|, page 39, [isa], page 39.

isa (obj, classname) [Function File]
Return true if obj is an object from the class classname.

classname may also be one of the following class categories:
"float" Floating point value comprising classes "double" and "single".

"integer"
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.

"numeric"
Numeric value comprising either a floating point or integer value.

40 GNU Octave
If classname is a cell array of string, a logical array of the same size is returned,
containing true for each class to which obj belongs to.

See also: [class]|, page 39, [typeinfo], page 39.

cast (val, "type") [Function File]
Convert val to data type type.
val must be one of the numeric classes:

"double"
"single"
"logical"
n Char n
n int8 n
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
The value val may be modified to fit within the range of the new type.
Examples:
cast (-5, "uint8")
= 0
cast (300, "int8")
= 127
See also: [typecast], page 40, [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16],
page 55, [int32], page 55, [uint32], page 55, [int64], page 55, [uint64], page 55, [double],
page 47, [single], page 53, [logical], page 60, [char]|, page 71, [class], page 39, [typeinfo],
page 39.
y = typecast (x, "class") [Built-in Function]

Return a new array y resulting from interpreting the data of x in memory as data of
the numeric class class.

Both the class of x and class must be one of the built-in numeric classes:

Chapter 3: Data Types 41

"logical"

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uinti6"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are reserved for class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double will be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class. If the input is a row vector, the return value is a
row vector, otherwise it is a column vector. If the bit length of x is not divisible by
that of class, an error occurs.

An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);
typecast (x, "uint8")
= [1, 0, 255, 255]

See also: [cast|, page 40, [bitpack], page 41, [bitunpack|, page 42, [swapbytes],

page 41.

swapbytes (x) [Function File]
Swap the byte order on values, converting from little endian to big endian and vice
versa.

For example:

swapbytes (uint16 (1:4))
= [2566 512 768 1024]

See also: [typecast], page 40, [cast], page 40.
y = bitpack (x, class) [Built-in Function]

Return a new array y resulting from interpreting the logical array x as raw bit patterns
for data of the numeric class class.

class must be one of the built-in numeric classes:

42 GNU Octave

"double"

"single"

"double complex"

"single complex"

"Char“

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc. The result is a row vector if x is a row vector, otherwise
it is a column vector.

See also: [bitunpack], page 42, [typecast], page 40.

y = bitunpack (x) [Built-in Function]
Return a logical array y corresponding to the raw bit patterns of x.
x must belong to one of the built-in numeric classes:

"double"
"single"
n Char“

n int8 n
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"

The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack], page 41, [typecast], page 40.
3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251 x 10739 to 1.7977 x 103%® can be stored, and the relative precision is approximately
2.2204 x 107'¢, The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions]|, page 135.

Chapter 3: Data Types 43

See Chapter 4 [Numeric Data Types|, page 47, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of
NaN.

NA [Built-in Function]
NA (n) [Built-in Function]
NA (n, m) [Built-in Function]
NA (n,m k, ...) [Built-in Function]
NA (..., class) [Built-in Function]
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.
When called with no arguments, return a scalar with the value ‘NA’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".
See also: [isnal, page 43.
isna (x) [Mapping Function]

Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not. For example:

isna ([13, Inf, NA, NaNJ])
= [0, 0, 1, 0]

See also: [isnan], page 400, [isinf], page 400, [isfinite], page 401.

3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings|, page 67, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Structures], page 99, for more information.

44 GNU Octave

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays], page 112, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ‘ov.h’, ‘ops.h’, and related files from Octave’s ‘src’
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return —1 for structure arguments.

ndims (a) [Built-in Function]
Return the number of dimensions of a. For any array, the result will always be larger
than or equal to 2. Trailing singleton dimensions are not counted.

ndims (ones (4, 1, 2, 1))
= 3

See also: [size], page 45.

columns (a) [Built-in Function]
Return the number of columns of a.

See also: [rows|, page 44, [size], page 45, [length], page 45, [numel], page 44, [isscalar],
page 63, [isvector], page 63, [ismatrix], page 62.

rows (a) [Built-in Function]
Return the number of rows of a.

See also: [columns|, page 44, [size], page 45, [length], page 45, [numel], page 44,
[isscalar], page 63, [isvector], page 63, [ismatrix|, page 62.

numel (a) [Built-in Function]

numel (a, idx1, idx2, ...) [Built-in Function]
Return the number of elements in the object a. Optionally, if indices idx1, idx2, . ..
are supplied, return the number of elements that would result from the indexing

a(idx1, idx2, ...)
Note that the indices do not have to be numerical. For example,
a=1;

b = ones (2, 3);
numel (a, b)

will return 6, as this is the number of ways to index with b.

Chapter 3: Data Types 45

This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.

See also: [size], page 45.

length (a) [Built-in Function]

size
size

Return the length of the object a.

The length is 0 for empty objects, 1 for scalars, and the number of elements for
vectors. For matrix objects, the length is the number of rows or columns, whichever
is greater (this odd definition is used for compatibility with MATLAB).

See also: [numel|, page 44, [size], page 45.

(a) [Built-in Function]
(a, dim) [Built-in Function]
Return the number of rows and columns of a.

With one input argument and one output argument, the result is returned in a row
vector. If there are multiple output arguments, the number of rows is assigned to the
first, and the number of columns to the second, etc. For example:

size ([1, 2; 3, 4; 5, 6])
= [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2
If given a second argument, size will return the size of the corresponding dimension.
For example,
size ([1, 2; 3, 4; 5, 6], 2)
= 2
returns the number of columns in the given matrix.

See also: [numel|, page 44, [ndims|, page 44, [length], page 45, [rows], page 44,
[columns], page 44.

isempty (a) [Built-in Function]

Return true if a is an empty matrix (any one of its dimensions is zero). Otherwise,
return false.

See also: [isnull], page 45, [isa], page 39.

isnull (x) [Built-in Function]

Return true if x is a special null matrix, string, or single quoted string. Indexed
assignment with such a value on the right-hand side should delete array elements.
This function should be used when overloading indexed assignment for user-defined
classes instead of isempty, to distinguish the cases:

A(I) = [1 This should delete elements if I is nonempty.

X=1[1; A(I) =X
This should give an error if I is nonempty.

See also: [isempty], page 45, [isindex], page 138.

46 GNU Octave

sizeof (val) [Built-in Function]
Return the size of val in bytes.

See also: [whos|, page 128.
size_equal (a, b, ...) [Built-in Function]

Return true if the dimensions of all arguments agree. Trailing singleton dimensions
are ignored. Called with a single or no argument, size_equal returns true.

See also: [size], page 45, [numel|, page 44, [ndims|, page 44.
squeeze (x) [Built-in Function]
Remove singleton dimensions from x and return the result. Note that for compatibility

with MATLAB, all objects have a minimum of two dimensions and row vectors are left
unchanged.

See also: [reshape], page 406.

Chapter 4: Numeric Data Types 47

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number that can be an
integer, a decimal fraction, a number in scientific (exponential) notation, or a complex
number. Note that by default numeric constants are represented within Octave in double-
precision floating point format (complex constants are stored as pairs of double-precision
floating point values). It is, however, possible to represent real integers as described in
Section 4.4 [Integer Data Types|, page 54. Here are some examples of real-valued numeric
constants, which all have the same value:

105

1.05e+2

1050e-1

To specify complex constants, you can write an expression of the form

3+ 4i

3.0 + 4.01

0.3el + 40e-11i
all of which are equivalent. The letter ‘i’ in the previous example stands for the pure
imaginary constant, defined as v/—1.

For Octave to recognize a value as the imaginary part of a complex constant, a space
must not appear between the number and the ‘i’. If it does, Octave will print an error
message, like this:

octave:13> 3 + 4 i

parse error:
syntax error

>>> 3 + 4 i

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms are equivalent.

double (x) [Built-in Function]
Convert x to double precision type.

See also: [single|, page 53.

complex (x) [Built-in Function]
complex (re, im) [Built-in Function]
Return a complex result from real arguments. With 1 real argument x, return the
complex result x + 0i. With 2 real arguments, return the complex result re + im.
complex can often be more convenient than expressions such as a + i*b. For example:
complex ([1, 2], [3, 4])
= [1+3i 2+4i]

See also: [real], page 431, [imag], page 431, [iscomplex|, page 62, [abs], page 431, [arg],
page 431.

43 GNU Octave

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
12
13 4

results in the matrix
Elements of a matrix may be arbitrary expressions, provided that the dimensions all
make sense when combining the various pieces. For example, given the above matrix, the
expression
[a, al

produces the matrix

ans =
1 2 1 2
3 4 3 4
but the expression
[a, 1]

produces the error
error: number of rows must match (1 !'= 2) near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a=1[12
3 4]
will work. However, some possible sources of confusion remain. For example, in the expres-
sion
[1-11]
the ‘-’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]
the ‘-’ is treated as a unary operator and the result is the vector [1, -1 1. Similarly, the
expression
[sin (pi) 1]
will be parsed as
[sin, (pi)]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi))]

Whitespace surrounding the single quote character (‘’’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression

Chapter 4: Numeric Data Types 49

[1 a’]

results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression

[1a’]
produces the error message

parse error:
syntax error

>> [1 a]

because not doing so would cause trouble when parsing the valid expression
[a ’foo’ 1]

For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

sizemax () [Built-in Function]
Return the largest value allowed for the size of an array. If Octave is compiled with
64-bit indexing, the result is of class int64, otherwise it is of class int32. The maximum
array size is slightly smaller than the maximum value allowable for the relevant class
as reported by intmax.

See also: [intmax], page 55.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

val = output_max_field_width () [Built-in Function]
old_val = output_max_field_width (new_val) [Built-in Function]
output_max_field_width (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the maximum width of a numeric
output field.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 232, [fixed_point_format], page 50, [output_precision],
page 50.

20 GNU Octave

val = output_precision () [Built-in Function]
old_val = output_precision (new_val) [Built-in Function]
output_precision (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 232, [fixed_point_format], page 50, [output_max_field_width],
page 49.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 231.

val = split_long_rows () [Built-in Function]
old_val = split_long_rows (new_val) [Built-in Function]
split_long_rows (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether rows of a matrix may be
split when displayed to a terminal window. If the rows are split, Octave will display
the matrix in a series of smaller pieces, each of which can fit within the limits of
your terminal width and each set of rows is labeled so that you can easily see which
columns are currently being displayed. For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 232.

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

Chapter 4: Numeric Data Types 51

val = fixed_point_format () [Built-in Function]
old_val = fixed_point_format (new_val) [Built-in Function]
fixed_point_format (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values.

The scaled format prints a scaling factor on the first line of output chosen such that
the largest matrix element can be written with a single leading digit. For example:

logspace (1, 7, 5)’
ans =

1.0e+07 x*

0.00000
0.00003
0.00100
0.03162
1.00000

Notice that the first value appears to be 0 when it is actually 1. Because of the
possibility for confusion you should be careful about enabling fixed_point_format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 232, [output_max_field_width], page 49, [output_precision],
page 50.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m x n matrix M,,«,, and an m X n empty
matrix ||, x, (with either one or both dimensions equal to zero), the following are true:

S men = men :

= [Jmxn

[Jmxn & [lmxn = [Imxn
H Mm><n = HOXn
Misen + [Jnx :meo
[Jmxo - [oxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[1’. The built-in variable print_empty_dimensions controls this behavior.

val = print_empty_dimensions () [Built-in Function]
old_val = print_empty_dimensions (new_val) [Built-in Function]

92 GNU Octave

print_empty_dimensions (new_val, "local") [Built-in Function]
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]’. For example, the
expression

zeros (3, 0)
will print
ans = [](3x0)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 232.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions|, page 149.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1:5
defines the set of values ‘[1, 2, 3, 4, 5]’, and the range
1 :3:5

defines the set of values ‘[1, 4 7]°.

Although a range constant specifies a row vector, Octave does not normally convert range
constants to vectors unless it is necessary to do so. This allows you to write a constant like
‘1 : 10000’ without using 80,000 bytes of storage on a typical 32-bit workstation.

A common example of when it does become necessary to convert ranges into vectors
occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas

x=0:0.1:1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression
y=[0:0.1:1];

defines y to be of type matrix and occupies 88 bytes of memory.

This space saving optimization may be disabled using the function disable_range.

val = disable_range () [Built-in Function]
old_val = disable_range (new_val) [Built-in Function]

Chapter 4: Numeric Data Types 53

disable_range (new_val, "local") [Built-in Function]
Query or set the internal variable that controls whether ranges are stored in a special
space-efficient format. The default value is true. If this option is disabled Octave will
store ranges as full matrices.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [disable_diagonal_matrix], page 503, [disable_permutation_matrix],
page 503.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of
elements is known, you should use the linspace function instead (see Section 16.3 [Special
Utility Matrices|, page 412).

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2x(1:1e7) - 1;

will produce the same result as ‘1:2:2e7-1’, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as ‘1:0:1’ is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ‘ones (1, 10)’ produces a range, while ‘ones (10, 1)’ does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

single (x) [Built-in Function]
Convert x to single precision type.

See also: [double], page 47.

for example:

54 GNU Octave

sngl = single (rand (2, 2))
= sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
= single

Many functions can also return single precision values directly. For example

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.

In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.

float = rand (2, 2)
= float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

isinteger (x) [Built-in Function]
Return true if x is an integer object (int8, uint8, intl6, etc.). Note that
isinteger (14) is false because numeric constants in Octave are double precision
floating point values.

See also: [isfloat], page 62, [ischar], page 68, [islogical], page 62, [isnumeric], page 62,
[isa], page 39.

int8 (x) [Built-in Function]
Convert x to 8-bit integer type.

See also: [uint8], page 55, [int16], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

Chapter 4: Numeric Data Types 55

uint8 (x) [Built-in Function]
Convert x to unsigned 8-bit integer type.

See also: [int8], page 54, [int16], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

int16 (x) [Built-in Function]
Convert x to 16-bit integer type.
See also: [int8], page 54, [uint8], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

uint16 (x) [Built-in Function]
Convert x to unsigned 16-bit integer type.
See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

int32 (x) [Built-in Function]
Convert x to 32-bit integer type.
See also: [int8], page 54, [uint8], page 55, [int16], page 55, [uint16], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

uint32 (x) [Built-in Function]
Convert x to unsigned 32-bit integer type.
See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [int64], page 55, [uint64], page 55.

int64 (x) [Built-in Function]
Convert x to 64-bit integer type.
See also: [int8], page 54, [uint8], page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [uint32], page 55, [uint64], page 55.

uint64 (x) [Built-in Function]
Convert x to unsigned 64-bit integer type.

See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [uint32], page 55, [int64], page 55.

intmax (type) [Built-in Function]
Return the largest integer that can be represented in an integer type. The variable
type can be
int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.

26 GNU Octave

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is int32.

See also: [intmin|, page 56, [flintmax], page 56, [bitmax], page 58.

intmin (type) [Built-in Function]
Return the smallest integer that can be represented in an integer type. The variable
type can be
int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is int32.

See also: [intmax], page 55, [flintmax]|, page 56, [bitmax], page 58.

flintmax () [Built-in Function]
flintmax ("double") [Built-in Function]
flintmax ("single") [Built-in Function]

Return the largest integer that can be represented consecutively in a floating point
value. The default class is "double", but "single" is a valid option. On IEEE-754
compatible systems, flintmax is 2°3 for "double" and 224 for "single".

See also: [bitmax|, page 58, [intmax|, page 55, [realmax|, page 455, [realmin],
page 456.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 — 20
when using unsigned integers. Octave makes sure that the result of integer computations is
the integer that is closest to the true result. So, the result of 10 — 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32 (5) ./ int32 (8) is 1.

Chapter 4: Numeric Data Types 57

idivide (x, y, op) [Function File]
Integer division with different rounding rules.
The standard behavior of integer division such as a ./ b is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the
fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"floor" Calculate a ./ b with the fractional part rounded towards negative in-
finity.

"ceil" Calculate a ./ b with the fractional part rounded towards positive infin-
ity.

If op is not given it defaults to "fix". An example demonstrating these rounding
rules is

idivide (int8 ([-3, 3]), int8 (4), "fix")
= int8 ([0, 0])

idivide (int8 ([-3, 3]), int8 (4), "round")
= int8 ([-1, 11)

idivide (int8 ([-3, 3]), int8 (4), "floor")
= int8 ([-1, 01)

idivide (int8 ([-3, 3]), int8 (4), "ceil")
= int8 ([0, 11)

See also: [ldivide], page 143, [rdivide], page 144.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

C = bitset (4, n) [Function File]

C = bitset (4, n, val) [Function File]
Set or reset bit(s) n of unsigned integers in A. val = 0 resets and val = 1 sets the bits.
The lowest significant bit is: n = 1. All variables must be the same size or scalars.

dec2bin (bitset (10, 1))
= 1011

See also: [bitand], page 58, [bitor|, page 58, [bitxor|, page 58, [bitget], page 57,
[bitcmp], page 59, [bitshift], page 59, [bitmax]|, page 58.

c = bitget (4, n) [Function File]
Return the status of bit(s) n of unsigned integers in A the lowest significant bit is n
= 1.

o8 GNU Octave

bitget (100, 8:-1:1)
=0 11 0 0 1 0 0

See also: [|bitand], page 58, [bitor], page 58, [bitxor|, page 58, [bitset], page 57,
[bitcmp], page 59, [bitshift], page 59, [bitmax]|, page 58.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * ones (1, 8), 8:-1:1)
It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the

floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit ma-
nipulation, particularly when forming masks, Octave supplies the function bitmax.

bitmax () [Built-in Function]
bitmax ("double") [Built-in Function]
bitmax ("single") [Built-in Function]

Return the largest integer that can be represented within a floating point value. The
default class is "double", but "single" is a valid option. On IEEE-754 compatible
systems, bitmax is 2°® — 1 for "double" and 22* — 1 for "single".

See also: [flintmax]|, page 56, [intmax|, page 55, [realmax], page 455, [realmin],
page 456.
This is the double precision version of the function intmax, previously discussed.
Octave also includes the basic bitwise ’and’, ’or’, and ’exclusive or’ operators.
bitand (x, y) [Built-in Function]
Return the bitwise AND of non-negative integers. x, y must be in the range [0,bitmax]
See also: [bitor|, page 58, [bitxor], page 58, [bitset|, page 57, [bitget], page 57,
[bitcmp], page 59, [bitshift], page 59, [bitmax]|, page 58.
bitor (x, y) [Built-in Function]
Return the bitwise OR of non-negative integers. x, y must be in the range [0,bitmax]
See also: [bitor], page 58, [bitxor|, page 58, [bitset], page 57, [bitget], page 57,
[bitcmp], page 59, [bitshift], page 59, [bitmax], page 58.
bitxor (x, y) [Built-in Function]
Return the bitwise XOR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitand], page 58, [bitor], page 58, [bitset], page 57, [bitget], page 57,
[bitemp], page 59, [bitshift], page 59, [bitmax]|, page 58.

Chapter 4: Numeric Data Types 59

The bitwise 'not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise 'not’ operator is bitcmp.

bitcmp (4, k) [Function File]
Return the k-bit complement of integers in A. If k is omitted k = log2 (bitmax) + 1
is assumed.

bitcmp (7,4)
= 8

dec2bin (11)
= 1011

dec2bin (bitcmp (11, 6))
= 110100

See also: [bitand], page 58, [bitor], page 58, [bitxor|, page 58, [bitset], page 57, [bitget],
page 57, [bitcmp], page 59, [bitshift], page 59, [bitmax], page 58.

Octave also includes the ability to left-shift and right-shift values bitwise.

bitshift (a, k) [Built-in Function]

bitshift (a, k, n) [Built-in Function]
Return a k bit shift of n-digit unsigned integers in a. A positive k leads to a left
shift; A negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1.
n must be in the range [1,log2(bitmax)+1] usually [1,33].

bitshift (eye (3), 1)

OOMU,
o N O
N O O

bitshift (10, [-2, -1, 0, 1, 2])
= 2 5 10 20 40

See also: [bitand], page 58, [bitor], page 58, [bitxor], page 58, [bitset], page 57, [bitget],
page 57, [bitcmp], page 59, [bitmax], page 58.
Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:

bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1, 1, 1, 1, 1, 1, 1].

60 GNU Octave

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.

data = [1, 2; 3, 4 1];
idx = (data <= 2);
data(idx)
= ans = [1; 2]
Instead of creating the idx array it is possible to replace data(idx) with data(data <=2)
in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.

logical (x) [Built-in Function]
Convert the numeric object x to logical type.

Any nonzero values will be converted to true (1) while zero values will be converted
to false (0). The non-numeric value NaN cannot be converted and will produce an
eITor.

Compatibility Note: Octave accepts complex values as input, whereas MATLAB issues
an error.

See also: [double], page 47, [single], page 53, [char|, page 71.

true (x) [Built-in Function]
true (n, m) [Built-in Function]
true (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 1. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [false], page 60.

false (x) [Built-in Function]
false (n, m) [Built-in Function]
false (n,m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 0. If invoked
with a single scalar integer argument, return a square matrix of the specified size.

Chapter 4: Numeric Data Types 61

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [true], page 60.

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example,

uint8 (1) + 1
= 2

where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like

uint8 (1) + uint8 (1)
= 2

which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as

single (1) + 1
- 2

returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as

min (single (1), 0)
= 0

where the returned value is single precision.
In the case of mixed type indexed assignments, the type is not changed. For example,

x = ones (2, 2);
x(1, 1) = single (2)
= x = 2 1

1 1

where x remains of the double precision type.

62 GNU Octave

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation
of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.

function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x).”2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.
isnumeric (x) [Built-in Function]

Return true if x is a numeric object, i.e., an integer, real, or complex array. Logical
and character arrays are not considered to be numeric.

See also: [isinteger], page 54, [isfloat], page 62, [isreal], page 62, [iscomplex], page 62,
[islogical], page 62, [ischar|, page 68, [iscell], page 113, [isstruct], page 107, [isa],

page 39.
islogical (x) [Built-in Function]
isbool (x) [Built-in Function]

Return true if x is a logical object.

See also: [isfloat], page 62, [isinteger], page 54, [ischar], page 68, [isnumeric|, page 62,
[isa], page 39.

isfloat (x) [Built-in Function]
Return true if x is a floating-point numeric object. Objects of class double or single
are floating-point objects.

See also: [isinteger], page 54, [ischar], page 68, [islogical], page 62, [isnumeric|, page 62,
[isa], page 39.

isreal (x) [Built-in Function]
Return true if x is a non-complex matrix or scalar. For compatibility with MATLAB,
this includes logical and character matrices.

See also: [iscomplex]|, page 62, [isnumeric], page 62, [isa], page 39.

iscomplex (x) [Built-in Function]
Return true if x is a complex-valued numeric object.
See also: [isreal], page 62, [isnumeric], page 62, [islogical], page 62, [ischar], page 68,
[isfloat], page 62, [isa], page 39.

ismatrix (a) [Built-in Function]
Return true if a is a 2-D array.

Chapter 4: Numeric Data Types 63

See also: [isscalar], page 63, [isvector], page 63, [iscell], page 113, [isstruct], page 107,
[issparse], page 518, [isa, page 39.

isvector (x) [Function File]
Return true if x is a vector.
A vector is a 2-D array where one of the dimensions is equal to 1. As a consequence

a 1x1 array, or scalar, is also a vector.

See also: [isscalar], page 63, [ismatrix], page 62, [size], page 45, [rows|, page 44,
[columns], page 44, [length], page 45.

isrow (x) [Function File]
Return true if x is a row vector 1xN with non-negative N.

See also: [iscolumn], page 63, [isscalar], page 63, [isvector]|, page 63, [ismatrix],
page 62.

iscolumn (x) [Function File]
Return true if x is a column vector Nx1 with non-negative N.

See also: [isrow], page 63, [isscalar|, page 63, [isvector|, page 63, [ismatrix], page 62.

isscalar (x) [Built-in Function]
Return true if x is a scalar.

See also: [isvector], page 63, [ismatrix], page 62.

issquare (x) [Function File]
Return true if x is a square matrix.

See also: [isscalar|, page 63, [isvector], page 63, [ismatrix|, page 62, [size|, page 45.

issymmetric (4) [Function File]
issymmetric (4, tol) [Function File]
Return true if A is a symmetric matrix within the tolerance specified by tol.
The default tolerance is zero (uses faster code). Matrix A is considered symmetric if
norm (A - A.’, Inf) / norm (4, Inf) < tol.

See also: [ishermitian], page 63, [isdefinite], page 63.

ishermitian (4) [Function File]
ishermitian (4, tol) [Function File]
Return true if A is Hermitian within the tolerance specified by tol.
The default tolerance is zero (uses faster code). Matrix A is considered symmetric if
norm (A - A’, Inf) / norm (4, Inf) < tol.

See also: [issymmetric|, page 63, [isdefinite], page 63.

isdefinite (4) [Function File]

isdefinite (4, tol) [Function File]
Return 1 if A is symmetric positive definite within the tolerance specified by tol or 0
if A is symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a
tolerance of 100 * eps * norm (4, "fro")

See also: [issymmetric|, page 63, [ishermitian]|, page 63.

64 GNU Octave

isbanded (4, lower, upper) [Function File]
Return true if A is a matrix with entries confined between lower diagonals below the
main diagonal and upper diagonals above the main diagonal.

lower and upper must be non-negative integers.
See also: [isdiag], page 64, [istril], page 64, [istriu], page 64, [bandwidth], page 458.

isdiag (4) [Function File]
Return true if A is a diagonal matrix.

See also: [isbanded|, page 64, [istril], page 64, [istriu], page 64, [diag], page 411,
[bandwidth], page 458.

istril (4) [Function File]
Return true if A is a lower triangular matrix.
A lower triangular matrix has nonzero entries only on the main diagonal and below.

See also: [istriu], page 64, [isbanded], page 64, [isdiag], page 64, [tril], page 410,
[bandwidth], page 458.

istriu (4) [Function File]
Return true if A is an upper triangular matrix.

An upper triangular matrix has nonzero entries only on the main diagonal and above.

See also: [isdiag|, page 64, [isbanded|, page 64, [istril], page 64, [triu], page 410,
[bandwidth], page 458.

isprime (x) [Function File]
Return a logical array which is true where the elements of x are prime numbers and
false where they are not.

A prime number is conventionally defined as a positive integer greater than 1 (e.g.,
2, 3, ...) which is divisible only by itself and 1. Octave extends this definition to
include both negative integers and complex values. A negative integer is prime if its
positive counterpart is prime. This is equivalent to isprime (abs (x)).
If class (x) is complex, then primality is tested in the domain of Gaussian integers
(http://en.wikipedia.org/wiki/Gaussian_integer). Some non-complex integers
are prime in the ordinary sense, but not in the domain of Gaussian integers. For
example, 5 = (1+2i)* (1 —2¢) shows that 5 is not prime because it has a factor other
than itself and 1. Exercise caution when testing complex and real values together in
the same matrix.
Examples:
isprime (1:6)
= [0, 1, 1, 0, 1, O]
isprime ([i, 2, 3, 5])
= [0, 0, 1, 0]
Programming Note: isprime is appropriate if the maximum value in x is not too
large (< lel5). For larger values special purpose factorization code should be used.
Compatibility Note: matlab does not extend the definition of prime numbers and will
produce an error if given negative or complex inputs.

See also: [primes]|, page 444, [factor], page 443, [gcd], page 443, [lem], page 443.

http://en.wikipedia.org/wiki/Gaussian_integer

Chapter 4: Numeric Data Types 65

If instead of knowing properties of variables, you wish to know which variables are
defined and to gather other information about the workspace itself, see Section 7.3 [Status
of Variables|, page 127.

Chapter 5: Strings 67

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops], page 141) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

["foo" , "bar" , "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 47, for more information about creating matrices.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:
toascii ("\n")
= 10
toascii (’\n’)
= [92 110]
Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, ‘*’.

\O Represents the null character, control-@, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

\nnn Represents the octal value nnn, where nnn are one to three digits between 0

and 7. For example, the code for the ASCII ESC (escape) character is ‘\033’.

63 GNU Octave

\xhh... Represents the hexadecimal value hh, where hh are hexadecimal digits (‘0’
through ‘9’ and either ‘A’ through ‘F’ or ‘a’ through ‘f’). Like the same construct
in ANSI C, the escape sequence continues until the first non-hexadecimal digit
is seen. However, using more than two hexadecimal digits produces undefined
results.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,

’I can’’t escape’
= I can’t escape

In scripts the two different string types can be distinguished if necessary by using is_
dq_string and is_sq_string.

is_dg_string (x) [Built-in Function]
Return true if x is a double-quoted character string.

See also: [is_sq_string], page 68, [ischar], page 68.

is_sq_string (x) [Built-in Function]
Return true if x is a single-quoted character string.

See also: [is_dq_string], page 68, [ischar|, page 68.

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.

collection = ["String #1"; "String #2" 1;
This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

ischar (x) [Built-in Function]
Return true if x is a character array.

See also: [isfloat], page 62, [isinteger], page 54, [islogical], page 62, [isnumeric], page 62,
[iscellstr]|, page 119, [isa], page 39.

To test if an object is a string (i.e., a character vector and not a character matrix) you
can use the ischar function in combination with the isvector function as in the following
example:

Chapter 5: Strings 69

ischar (collection)
= 1

ischar (collection) && isvector (collection)
= 0

ischar ("my string") && isvector ("my string")
=1
One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string fill_char function.

val = string_f£fill_char () [Built-in Function]
old_val = string_fill_char (new_val) [Built-in Function]
string_fill_char (new_val, "local") [Built-in Function]
Query or set the internal variable used to pad all rows of a character matrix to the
same length; It must be a single character. The default value is " " (a single space).

For example:
string fill_char ("X");

["these"; "are"; "strings"]
= "theseXX"
"areXXxXx"
"strings"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.2.4 [Cell Arrays of Strings|, page 118.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

blanks (n) [Function File]
Return a string of n blanks, for example:
blanks (10);
whos ans
=
Attr Name Size Bytes Class
ans 1x10 10 char

See also: [repmat], page 413.

70 GNU Octave

5.3.1 Concatenating Strings

Strings can be concatenated using matrix notation (see Chapter 5 [Strings|, page 67,
Section 5.2 [Character Arrays|, page 68) which is often the most natural method. For
example:

fullname = [fname ".txt"];
email = ["<" user "@" domain ">"];

In each case it is easy to see what the final string will look like. This method is also the
most efficient. When using matrix concatenation the parser immediately begins joining the
strings without having to process the overhead of a function call and the input validation
of the associated function.

Nevertheless, there are several other functions for concatenating string objects which
can be useful in specific circumstances: char, strvcat, strcat, and cstrcat. Finally,
the general purpose concatenation functions can be used: see [cat], page 404, [horzcat],
page 405, and [vertcat|, page 405.

e All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

char ([98, 97, 110, 97, 110, 971)
= banana

e char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char ("an apple", "two pears")
= an apple
two pears

strcat ("oc", "tave", " is", " good", " for you")
= octave is good for you

e char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.

char (“orange“, "green", L "red")
= orange
green

red

strvcat ("orange", "green", "", "red")
= orange
green
red

e All string concatenation functions except cstrcat also accept cell array data (see
Section 6.2 [Cell Arrays|, page 112). char and strvcat convert cell arrays into char-
acter arrays, while strcat concatenates within the cells of the cell arrays:

Chapter 5: Strings 71

Char ({"red", "green", nn’ "blue"})
= red
green

blue

strcat ({"abc"; "ghi"}, {"def"; "jk1"})
=
{
[1,1] = abcdef
[2,1] = ghijkl

}

e strcat removes trailing white space in the arguments (except within cell arrays), while
cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat (["diril";"directory2"], ["/";"/"], ["filel";"file2"])
= dirl/filel
directory2/file2

cstrcat (["thirteen apples"; "a banana"]l, [" 5%";" 1$"])
= thirteen apples 5%
a banana 1$

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays],
page 68).

char (x) [Built-in Function]
char (x,...) [Built-in Function]
char (s1,s2, ...) [Built-in Function]
char (cell_array) [Built-in Function]

Create a string array from one or more numeric matrices, character matrices, or cell
arrays. Arguments are concatenated vertically. The returned values are padded with
blanks as needed to make each row of the string array have the same length. Empty
input strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

char ([97, 98, 99], "", {"98", "99",6 100}, "stri", ["ha", "1f"])
= ["abc "
ll98 n
ll99 n
lld n
"stri "
"half "]

72 GNU Octave

See also: [strvcat], page 72, [cellstr], page 119.

strvcat (x) [Built-in Function

strvcat (x, ...) [Built-in Function

strvcat (s1,s2,...) [Built-in Function

strvcat (cell_array) [Built-in Function
Create a character array from one or more numeric matrices, character matrices, or
cell arrays. Arguments are concatenated vertically. The returned values are padded
with blanks as needed to make each row of the string array have the same length.
Unlike char, empty strings are removed and will not appear in the output.

[i i

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

strvcat ([97, 98, 99], "", {"98", "99", 100}, "stri", ["ha", "1f"])
= ["abc "

I|98 n

"99 n

"d n

"stri "

"half "]

See also: [char], page 71, [strcat], page 72, [cstrcat], page 73.

strcat (si1,s2,...) [Function File]
Return a string containing all the arguments concatenated horizontally. If the argu-
ments are cell strings, strcat returns a cell string with the individual cells concate-
nated. For numerical input, each element is converted to the corresponding ASCII
character. Trailing white space for any character string input is eliminated before
the strings are concatenated. Note that cell string values do not have whitespace
trimmed.

For example:

strcat ("|", " leading space is preserved", "|")
= | leading space is preserved]|

strcat ("|", "trailing space is eliminated ", "[")
= |trailing space is eliminated]|

strcat ("homogeneous space |", " ", "| is also eliminated")
= homogeneous space || is also eliminated

s = ["ab"; "cde" 1;
strcat (s, s, s)
=
"ababab "
"cdecdecde"

Chapter 5: Strings 73

S = { llab"; ||cd n };
strcat (s, s, s)
=
{
[1,1] = ababab
[2,1] cd cd cd

}

See also: [cstrcat], page 73, [char|, page 71, [strvcat], page 72.

cstrcat (si,s2,...) [Function File]
Return a string containing all the arguments concatenated horizontally. Trailing white
space is preserved. For example:

cstrcat ("ab "o "ed")
= "ab cd"

s = ["ab"; "cde" 1;
cstrcat (s, s, s)

= "ab ab ab "

"cdecdecde"

See also: [strcat], page 72, [char], page 71, [strvcat], page 72.

5.3.2 Converting Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 70) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 252, [sprintf], page 252).

s = mat2str (x, n) [Function File]
mat2str (x, n, "class") [Function File]
Format real, complex, and logical matrices as strings. The returned string may be
used to reconstruct the original matrix by using the eval function.

(4]
I

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n (1) defines the
precision of the real part and n(2) defines the precision of the imaginary part. The
default for n is 15.

If the argument "class" is given then the class of x is included in the string in such
a way that eval will result in the construction of a matrix of the same class.

74 GNU Octave

mat2str ([-1/3 + i/7; 1/3 - i/7 1, [4 2])
= "[-0.3333+0.14i;0.3333-0.14i]"

mat2str ([-1/3 +i/7; 1/3 -i/7 1, [4 2])
= "[-0.3333+0i 0+0.14i;0.3333+01i -0-0.14i]"

mat2str (int1é ([1 -1]), "class")
= "int16([1 -1])"

mat2str (logical (eye (2)))
= "[true false;false true]"

isequal (x, eval (mat2str (x)))
=1

See also: [sprintf], page 252, [num2str], page 74, [int2str]|, page 75.

num2str (x) [Function File]
num2str (x, precision) [Function File]
num2str (x, format) [Function File]

Convert a number (or array) to a string (or a character array). The optional second
argument may either give the number of significant digits (precision) to be used in
the output or a format template string (format) as in sprintf (see Section 14.2.4
[Formatted Output], page 252). num2str can also handle complex numbers.

Examples:

num2str (123.456)
= "123.46"

num2str (123.456, 4)
= "123.5"

s = num2str ([1, 1.34; 3, 3.56], ")5.1f")

= s =
1.0 1.3
3.0 3.6
whos s
=
Attr Name Size Bytes Class
s 2x8 16 char

num2str (1.234 + 27.31)
= "1.234+27.3i"

Notes:
For MATLAB compatibility, leading spaces are stripped before returning the string.

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 252).

Chapter 5: Strings 75

For complex x, the format string may only contain one output conversion specification
and nothing else. Otherwise, results will be unpredictable.

See also: [sprintf], page 252, [int2str]|, page 75, [mat2str]|, page 73.

int2str (n) [Function File]
Convert an integer (or array of integers) to a string (or a character array).

int2str (123)
= 123"

s = int2str ([1, 2, 3; 4, 5, 6])

= 5 =
1 2 3
4 5 6
whos s
=
Attr Name Size Bytes Class
s 2x7 14 char

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output], page 252).

See also: [sprintf], page 252, [num2str], page 74, [mat2str], page 73.

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")
= spaces =
0o o o o0 ©O 1 0O 0 0 1 0O o o0 ©

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

strcmp (s1, s2) [Built-in Function]
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi], page 76, [strncmp]|, page 76, [strncmpi|, page 76.

76 GNU Octave

strncmp (si1, s2, n) [Built-in Function]
Return 1 if the first n characters of strings sI and s2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)
= 1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]

Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 76, [strcmp], page 75, [strcmpi], page 76.

strcmpi (si, s2) [Built-in Function]
Return 1 if the character strings s and s2 are the same, disregarding case of alpha-
betic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

Caution: National alphabets are not supported.

See also: [strcmp], page 75, [strncmp|, page 76, [strncmpi], page 76.

strncmpi (si, s2, n) [Built-in Function]
Return 1 if the first n character of sl and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either sI or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 76, [stremp|, page 75, [strempi], page 76.

Chapter 5: Strings 7

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " n) = n_n
= quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

deblank (s) [Function File]
Remove trailing whitespace and nulls from s. If s is a matrix, deblank trims each row
to the length of longest string. If s is a cell array of strings, operate recursively on
each string element.

Examples:
deblank (" abc ")
= " abc"
deblank ([" abc e def ")
= [n abc " ; n def“]

See also: [strtrim|, page 77.

strtrim (s) [Function File]
Remove leading and trailing whitespace from s. If s is a matrix, strtrim trims each
row to the length of longest string. If s is a cell array of strings, operate recursively
on each string element. For example:

strtrim (" abc ")
= "abc"

strtrim ([" abc o def ")
é ["abc n ; n defH]

See also: [deblank], page 77.

strtrunc (s, n) [Function File]
Truncate the character string s to length n. If s is a character matrix, then the
number of columns is adjusted. If s is a cell array of strings, then the operation is
performed on each cell element and the new cell array is returned.

findstr (s, t) [Function File]

findstr (s, t, overlap) [Function File]
Return the vector of all positions in the longer of the two strings s and t where
an occurrence of the shorter of the two starts. If the optional argument overlap is
true, the returned vector can include overlapping positions (this is the default). For
example:

78 GNU Octave

findstr ("ababab", "a")

= [1, 3, 51;
findstr ("abababa", "aba", 0)
= [1, 5]

Caution: findstr is scheduled for deprecation. Use strfind in all new code.
See also: [strfind], page 78, [strmatch], page 79, [strcmp], page 75, [strncmp], page 76,
[strempi], page 76, [strncmpi], page 76, [find], page 401.

idx = strchr (str, chars) Function File

[]
idx = strchr (str, chars, n) [Function File]
idx = strchr (str, chars, n, direction) [Function File]
[i, j] = strchr (...) [Function File]

Search for the string str for occurrences of characters from the set chars. The return
value(s), as well as the n and direction arguments behave identically as in find.

This will be faster than using regexp in most cases.

See also: [find], page 401.

index (s, t) [Function File]

index (s, t, direction) [Function File]
Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found. s may also be a string array or cell array of strings.

For example:

index ("Teststring", "t")
= 4

If direction is "first", return the first element found. If direction is "last", return
the last element found.

See also: [find], page 401, [rindex], page 78.

rindex (s, t) [Function File]
Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found. s may also be a string array or cell array of
strings.

For example:

rindex ("Teststring", "t")
= 6

The rindex function is equivalent to index with direction set to "last".

See also: [find], page 401, [index], page 78.

idx = strfind (str, pattern) [Built-in Function]
idx = strfind (cellstr, pattern) [Built-in Function]
idx = strfind (..., "overlaps", val) [Built-in Function]

Search for pattern in the string str and return the starting index of every such occur-
rence in the vector idx.

If there is no such occurrence, or if pattern is longer than str, or if pattern itself is
empty, then idx is the empty array [1. The optional argument "overlaps" determines

Chapter 5: Strings 79

str
str

whether the pattern can match at every position in str (true), or only for unique
occurrences of the complete pattern (false). The default is true.

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above.

Examples:
strfind ("abababa", "aba")
= [1, 3, 5]
strfind ("abababa", "aba", "overlaps", false)
= [1, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")

=
{
(1,1] =
1 3 5
[1,2] = [1(1x0)
[1,3] = [1(1x0)
}

See also: [findstr|, page 77, [strmatch], page 79, [regexp|, page 85, [regexpi|, page 88,
[find], page 401.

= strjoin (cstr) [Function File]
= strjoin (cstr, delimiter) [Function File]
Join the elements of the cell string array, cstr, into a single string.

If no delimiter is specified, the elements of cstr separated by a space.

If delimiter is specified as a string, the cell string array is joined using the string.
Escape sequences are supported.

If delimiter is a cell string array whose length is one less than cstr, then the elements of
cstr are joined by interleaving the cell string elements of delimiter. Escape sequences
are not supported.
strjoin ({’Octave’,’Scilab’,’Lush’,’Yorick’}, ’*’)
= ’0OctavexScilab*Lush*Yorick’

See also: [strsplit], page 80.

strmatch (s, 4) [Function File]
strmatch (s, 4, "exact") [Function File]

Return indices of entries of A which begin with the string s. The second argument A
must be a string, character matrix, or a cell array of strings. If the third argument
"exact" is not given, then s only needs to match A up to the length of s. Trailing
spaces and nulls in s and A are ignored when matching.

For example:

80

GNU Octave

strmatch ("apple", "apple juice")
=1

strmatch ("apple", ["apple "; "apple juice"; "an apple"])

= [1; 2]
strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")
= [1]

Caution: strmatch is scheduled for deprecation. Use strncmp (normal case), or
strcmp ("exact" case), or regexp in all new code.

See also: [strfind], page 78, [findstr], page 77, [strcmp], page 75, [strncmp|, page 76,
[strcmpi], page 76, [strncmpi], page 76, [find], page 401.

[tok, rem] = strtok (str) [Function File]
[tok, rem] = strtok (str, delim) [Function File]

[cstr] = strsplit (s) [
[cstr] = strsplit (s, del) [Function File
[cstr] = strsplit (..., name, value) [
[cstr, matches] = strsplit (...) [Function File

Find all characters in the string str up to, but not including, the first character
which is in the string delim. If rem is requested, it contains the remainder of the
string, starting at the first delimiter. Leading delimiters are ignored. If delim is not
specified, whitespace is assumed. str may also be a cell array of strings in which case
the function executes on every individual string and returns a cell array of tokens and
remainders.

Examples:

strtok ("this is the life")
= "this"

[tok, rem] = strtok ("14*27+31", "+-%x/")
=

tok

rem

14
*27+31

See also: [index], page 78, [strsplit], page 80, [strchr], page 78, [isspace], page 95.

Function File

]
]
Function File]
]
Split the string s using the delimiters specified by del and return a cell string array
of substrings. If a delimiter is not specified the string, s, is split at whitespace. The
delimiter, del may be a string, a scalar cell string, or cell string array. By default,
consecutive delimiters in the input string s are collapsed into one.

The second output, matches, returns the delimiters which were matched in the original
string.

Example:

strsplit ("a b c")
=
{

Chapter 5: Strings

81

[1,1] = a
[1,2] = Db
[1,3] = ¢
}
strsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = ¢
}
strsplit ("a foo b,bar c", {"\s", "foo", "bar"})
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,,b, c", {",", " "}, false)
=
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢
}

Supported name/value pair arguments are;

e collapsedelimiters may take the value of true or false with the default being false.

e delimitertype may take the value of simple or regularexpression. The default
is delimitertype is simple.

Example:
strsplit ("a foo b,bar c", ",|\\s|foo|bar", "delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,,b, c", "[, 1", false, "delimitertype", "regularexpression")

=

{
[1,1]1 =

a

82 GNU Octave

[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢
}
strsplit ("a,\t,b, c", {’,’, ’\s’}, "delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,\t,b, c", {’,’, > ’, ’\t’}, "collapsedelimiters", false)
=
{
[1,1] = a
[1,2] =
[1,3] =
[1,4] = b
[1,5] =
[1,6] = ¢
}

See also: [ostrsplit], page 82, [strjoin|, page 79, [strtok], page 80, [regexp], page 85.

[cstr] = ostrsplit (s, sep) [Function File]

[cstr] = ostrsplit (s, sep, strip_empty) [Function File]
Split the string s using one or more separators sep and return a cell array of strings.
Consecutive separators and separators at boundaries result in empty strings, unless
strip_empty is true. The default value of strip_empty is false.

2-D character arrays are split at separators and at the original column boundaries.
Example:

ostrsplit ("a,b,c", ",")

=
{
[1,1] = a
[1,2] =
[1,3] = ¢
}
ostrsplit (["a,b" ; "cde"l, ","™)
=
{
[1,1] = a
[1,2] =D
[1,3] = cde
}

See also: [strsplit], page 80, [strtok], page 80.

Chapter 5: Strings 83

[a,
[a,
[a,
[a,
[a,

..] = strread (str) [Function File]
..] = strread (str, format) [Function File]
..] = strread (str, format, format_repeat) [Function File]
.] = strread (str, format, propl, valuel, ...) [Function File]
..] = strread (str, format, format_repeat, propl, [Function File]
valuel, ...)

Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

%s The word is parsed as a string.

pA

n The word is parsed as a number and converted to double.
hd

u The word is parsed as a number and converted to int32.

%*1 s J%*f) s ’%*S
The word is skipped.
For %s and %d, %f, %n, %u and the associated %*s ... specifiers an
optional width can be specified as %Ns, etc. where N is an integer > 1.
For %f, format specifiers like %N.Mf are allowed.

literals In addition the format may contain literal character strings; these will be
skipped during reading.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

By default, format is "%f", meaning that numbers are read from str. This will do if
str contains only numeric fields.

For example, the string

str = "\

Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"

can be read using

[a, b, c] = strread (str, "%s %s %Hf");
Optional numeric argument format_repeat can be used for limiting the number of
items read:

-1 (default) read all of the string until the end.

N Read N times nargout items. 0 (zero) is an acceptable value for for-
mat_repeat.

GNU Octave

The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.

e "shell" Everything from # characters to the nearest end-of-line is
skipped.

e '"c" Everything between /* and */ is skipped.

e "c++" Everything from // characters to the nearest end-of-line is
skipped.

e "matlab" Everything from % characters to the nearest end-of-line is
skipped.

e user-supplied. Two options: (1) One string, or 1x1 cell string: Skip
everything to the right of it; (2) 2x1 cell string array: Everything
between the left and right strings is skipped.

"delimiter"
Any character in value will be used to split str into words (default value
= any whitespace).

"emptyvalue":
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then default is zero.

"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between,
as a single delimiter. Consecutive delimiter series need not be vertically
"aligned".

"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"returnonerror"
If value true (1, default), ignore read errors and return normally. If false
(0), return an error.

"whitespace"
Any character in value will be interpreted as whitespace and trimmed; the
string defining whitespace must be enclosed in double quotes for proper
processing of special characters like \t. The default value for whitespace
= " \b\r\n\t" (note the space). Unless whitespace is set to ” (empty)
AND at least one "%s" format conversion specifier is supplied, a space is
always part of whitespace.

When the number of words in str doesn’t match an exact multiple of the number of
format conversion specifiers, strread’s behavior depends on the last character of str:

Chapter 5: Strings 85

last character = "\n"
Data columns are padded with empty fields or Nan so that all columns
have equal length

last character is not "\n"
Data columns are not padded; strread returns columns of unequal length

See also: [textscan|, page 245, [textread|, page 244, [load], page 240, [dlmread],
page 243, [fscanf], page 257.

newstr = strrep (str, ptn, rep) [Built-in Function]
newstr = strrep (cellstr, ptn, rep) [Built-in Function]
newstr = strrep (..., "overlaps", val) [Built-in Function]

Replace all occurrences of the pattern ptn in the string str with the string rep and
return the result.

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern
(false). The default is true.

s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

Example:
strrep ("This is a test string", "is", "&%$")
= "Th&%$ &%$ a test string"

See also: [regexprep|, page 88, [strfind], page 78, [findstr], page 77.

substr (s, offset) [Function File]

substr (s, offset, len) [Function File]
Return the substring of s which starts at character number offset and is len characters
long.

Position numbering for offsets begins with 1. If offset is negative, extraction starts
that far from the end of the string.

If Ien is omitted, the substring extends to the end of S. A negative value for len
extracts to within len characters of the end of the string

Examples:

substr ("This is a test string", 6, 9)
= "is a test"

substr ("This is a test string", -11)
= '"test string"

substr ("This is a test string", -11, -7)
= "test"

This function is patterned after the equivalent function in Perl.
[s, e, te, m, t, nm, sp] = regexp (str, pat) [Built-in Function]
[...] = regexp (str, pat, "optl", ...) [Built-in Function]
Regular expression string matching. Search for pat in str and return the positions
and substrings of any matches, or empty values if there are none.

The matched pattern pat can include any of the standard regex operators, including:

86

*+ 7 {}

...1["..

O (@)
I

"8

GNU Octave

Match any character

Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{n} Match exactly n times

{n,} Match n or more times

{m,n} Match between m and n times
.1

List operators. The pattern will match any character listed between "["
and "]". If the first character is """ then the pattern is inverted and any
character except those listed between brackets will match.

Escape sequences defined below can also be used inside list operators.
For example, a template for a floating point number might be [-+.\d]+.

Grouping operator. The first form, parentheses only, also creates a token.

Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

Anchoring operators. Requires pattern to occur at the start (*) or end
($) of the string.

In addition, the following escaped characters have special meaning.

\d
\D
\s
\S
\w
\W
\<
\>
\B

Match any digit

Match any non-digit

Match any whitespace character
Match any non-whitespace character
Match any word character

Match any non-word character
Match the beginning of a word
Match the end of a word

Match within a word

Implementation Note: For compatibility with MATLAB, ordinary escape sequences
(e.g., "\n" => newline) are processed in pat regardless of whether pat has been
defined within single quotes. Use a second backslash to stop interpolation of the
escape sequence (e.g., "\\n") or use the regexptranslate function.

The outputs of regexp default to the order given below

S

e

The start indices of each matching substring

The end indices of each matching substring

Chapter 5: Strings 87

te

nm

sp

The extents of each matched token surrounded by (...) in pat
A cell array of the text of each match
A cell array of the text of each token matched

A structure containing the text of each matched named token, with
the name being used as the fieldname. A named token is denoted by
(?<name>...).

A cell array of the text not returned by match, i.e., what remains if you
split the string based on pat.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

’start’ S
’end’

’tokenExtents’ te
match’ m
’tokens’ t
’names’ nm
’split’ sp

Additional arguments are summarized below.

‘once’

Return only the first occurrence of the pattern.

‘matchcase’

Make the matching case sensitive. (default)

Alternatively, use (7-1) in the pattern.

‘ignorecase’

Ignore case when matching the pattern to the string.

Alternatively, use (?7i) in the pattern.

‘stringanchors’

Match the anchor characters at the beginning and end of the string.
(default)

Alternatively, use (?7-m) in the pattern.

‘lineanchors’

‘dotall’

Match the anchor characters at the beginning and end of the line.

Alternatively, use (?m) in the pattern.

The pattern . matches all characters including the newline character.
(default)

Alternatively, use (7s) in the pattern.

‘dotexceptnewline’

The pattern . matches all characters except the newline character.

Alternatively, use (7-s) in the pattern.

88 GNU Octave

‘literalspacing’
All characters in the pattern, including whitespace, are significant and
are used in pattern matching. (default)

Alternatively, use (7-x) in the pattern.

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#’.

Alternatively, use (7x) in the pattern.

‘noemptymatch’
Zero-length matches are not returned. (default)

‘emptymatch’
Return zero-length matches.

regexp (’a’, ’b*’, ’emptymatch’) returns [1 2] because there are
zero or more ’b’ characters at positions 1 and end-of-string.

See also: [regexpi|, page 88, [strfind], page 78, [regexprep], page 88.

[s, e, te, m, t, nm, sp] = regexpi (str, pat) [Built-in Function]

[...] = regexpi (str, pat, "opt1", ...) [Built-in Function]
Case insensitive regular expression string matching. Search for pat in str and return
the positions and substrings of any matches, or empty values if there are none. See
[regexp], page 85, for details on the syntax of the search pattern.

See also: [regexp]|, page 85.

outstr = regexprep (string, pat, repstr) [Built-in Function]
outstr = regexprep (string, pat, repstr, "optl", ...) [Built-in Function]
Replace occurrences of pattern pat in string with repstr.

The pattern is a regular expression as documented for regexp. See [regexp|, page 85.

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep ("Bill Dunn", ’(\w+) (\w+)’, ’$2, $1°)
returns "Dunn, Bill"

Options in addition to those of regexp are
‘once’ Replace only the first occurrence of pat in the result.

‘warnings’

This option is present for compatibility but is ignored.
Implementation Note: For compatibility with MATLAB, ordinary escape sequences
(e.g., "\n" => newline) are processed in both pat and repstr regardless of whether

they were defined within single quotes. Use a second backslash to stop interpolation
of the escape sequence (e.g., "\\n") or use the regexptranslate function.

See also: [regexp|, page 85, [regexpi|, page 88, [strrep|, page 85.

Chapter 5: Strings 89

regexptranslate (op, s) [Function File]
Translate a string for use in a regular expression. This may include either wildcard
replacement or special character escaping. The behavior is controlled by op which
can take the following values

"wildcard"
The wildcard characters ., *, and ? are replaced with wildcards that are
appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")
= ".*\.m"
"escape" The characters $.7[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
= "12\.5"

See also: [regexp|, page 85, [regexpi], page 88, [regexprep], page 88.

untabify (t) [Function File]
untabify (t, tw) [Function File]
untabify (t, tw, deblank) [Function File]

Replace TAB characters in t, with spaces. The tab width is specified by tw, or defaults
to eight. The input, t, may be either a 2-D character array, or a cell array of character
strings. The output is the same class as the input.

If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.

The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")?’);

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);
fprintf (fid, "%s\n", text{:});

fclose (fid);

See also: [strjust], page 93, [strsplit], page 80, [deblank]|, page 77.

5.6 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example,
it is possible to convert a string containing a hexadecimal number to a floating point number.

hex2dec ("FF")
= 255

bin2dec (s) [Function File]
Return the decimal number corresponding to the binary number represented by the
string s. For example:

90 GNU Octave

bin2dec ("1110")
= 14

Spaces are ignored during conversion and may be used to make the binary number
more readable.

bin2dec ("1000 0001")
= 129

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2bin], page 90, [base2dec|, page 91, [hex2dec], page 90.

dec2bin (d, len) [Function File]
Return a binary number corresponding to the non-negative integer d, as a string of
ones and zeros. For example:

dec2bin (14)
= "1110"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec|, page 89, [dec2base|, page 91, [dec2hex], page 90.

dec2hex (d, len) [Function File]
Return the hexadecimal string corresponding to the non-negative integer d. For
example:
dec2hex (2748)
= "ABC"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec], page 90, [dec2base], page 91, [dec2bin], page 90.

hex2dec (s) [Function File]
Return the integer corresponding to the hexadecimal number represented by the string
s. For example:

hex2dec ("12B")
= 299

hex2dec ("12b")
= 299

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

Chapter 5: Strings 91

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2hex], page 90, [base2dec], page 91, [bin2dec], page 89.

dec2base (d, base) [Function File]
dec2base (d, base, len) [Function File]
Return a string of symbols in base base corresponding to the non-negative integer d.

dec2base (123, 3)
= "11120"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Space (’’) may not be used as a symbol.
dec2base (123, "aei")
= "eeeia"

The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 91, [dec2bin], page 90, [dec2hex], page 90.

base2dec (s, base) [Function File]
Convert s from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)
= 123

If s is a string matrix, return a column vector with one value per row of s. If a row
contains invalid symbols then the corresponding value will be NaN.

If 5 is a cell array of strings, return a column vector with one value per cell element
in s.

If base is a string, the characters of base are used as the symbols for the digits of s.
Space (’) may not be used as a symbol.

base2dec ("yyyzx", "xyz")
= 123

See also: [dec2base], page 91, [bin2dec|, page 89, [hex2dec], page 90.

s = num2hex (n) [Built-in Function]
Typecast a double or single precision number or vector to a 8 or 16 character hex-
adecimal string of the IEEE 754 representation of the number. For example:

num2hex ([-1, 1, e, Inf])

= "b£f£0000000000000
3££0000000000000
4005bf0a8b145769
7££0000000000000"

If the argument n is a single precision number or vector, the returned string has a
length of 8. For example:

92 GNU Octave
num2hex (single ([-1, 1, e, Inf]))
= "b£800000
3£800000
402d£854
7£800000"
See also: [hex2num)], page 92, [hex2dec], page 90, [dec2hex]|, page 90.
n = hex2num (s) [Built-in Function]
n = hex2num (s, class) [Built-in Function]
Typecast the 16 character hexadecimal character string to an IEEE 754 double preci-
sion number. If fewer than 16 characters are given the strings are right padded with
>0’ characters.
Given a string matrix, hex2num treats each row as a separate number.
hex2num (["4005b£0a8b145769"; "4024000000000000"1)
= [2.7183; 10.000]
The optional argument class can be passed as the string "single" to specify that the
given string should be interpreted as a single precision number. In this case, s should
be an 8 character hexadecimal string. For example:
hex2num (["402d£854"; "41200000"], "single")
= [2.7183; 10.000]
See also: [num2hex], page 91, [hex2dec|, page 90, [dec2hex]|, page 90.
str2double (s) [Built-in Function]

Convert a string to a real or complex number.
The string must be in one of the following formats where a and b are real numbers
and the complex unit is i’ or ’j’:
e a+bi
e a+ b*i
e a+i*b
e bit+a
e b*i+a
o i*b+a
If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate

optional arguments and ’d’ indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

s may be a character string, character matrix, or cell array. For character arrays
the conversion is repeated for every row, and a double or complex array is returned.
Empty rows in s are deleted and not returned in the numeric array. For cell arrays
each character string element is processed and a double or complex array of the same
dimensions as s is returned.

For unconvertible scalar or character string input str2double returns a NaN. Simi-
larly, for character array input str2double returns a NaN for any row of s that could
not be converted. For a cell array, str2double returns a NaN for any element of s

Chapter 5: Strings 93

for which conversion fails. Note that numeric elements in a mixed string/numeric cell
array are not strings and the conversion will fail for these elements and return NaN.
str2double can replace str2num, and it avoids the security risk of using eval on
unknown data.

See also: [str2num], page 93.

strjust (s) [Function File]

strjust (s, pos) [Function File]
Return the text, s, justified according to pos, which may be "left", "center", or
"right". If pos is omitted it defaults to "right".

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:
strjust ([nan ; uabn ; "abc" ; “abcd“])
=
n a"
n ab"
" abc"
"abcd"

See also: [deblank], page 77, [strrep], page 85, [strtrim], page 77, [untabify], page 89.

X = str2num (s) [Function File]
[x, state] = str2num (s) [Function File]
Convert the string (or character array) s to a number (or an array). Examples:

str2num ("3.141596")
= 3.141596

str2num (["1, 2, 3"; "4, 5, 6"])
=1 2 3
4 5 6

The optional second output, state, is logically true when the conversion is successful.
If the conversion fails the numeric output, x, is empty and state is false.

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double for a safer and faster
conversion.

For cell array of strings use str2double.
See also: [str2double], page 92, [eval], page 155.

toascii (s) [Mapping Function]
Return ASCII representation of s in a matrix. For example:

toascii ("ASCII")
= [65, 83, 67, 73, 73 1]

See also: [char|, page 71.

94 GNU Octave

tolower (s) [Mapping Function]

lower (s) [Mapping Function]
Return a copy of the string or cell string s, with each uppercase character replaced by
the corresponding lowercase one; non-alphabetic characters are left unchanged. For
example:

tolower ("MiXeD cAsE 123")
= "mixed case 123"

See also: [toupper], page 94.

toupper (s) [Mapping Function]

upper (s) [Mapping Function]
Return a copy of the string or cell string s, with each lowercase character replaced by
the corresponding uppercase one; non-alphabetic characters are left unchanged. For
example:

toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

See also: [tolower]|, page 94.

do_string_escapes (string) [Built-in Function]
Convert special characters in string to their escaped forms.

undo_string_escapes (s) [Built-in Function]
Convert special characters in strings back to their escaped forms. For example, the
expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:
isalpha ("!'Q@WERT"Y&")
= [o0,1,0,1, 1,1, 1, 0, 1, 01

isalnum (s) [Mapping Function]
Return a logical array which is true where the elements of s are letters or digits and
false where they are not. This is equivalent to (isalpha (s) | isdigit (s)).

Chapter 5: Strings 95

See also: [isalphal, page 95, [isdigit], page 95, [ispunct], page 95, [isspace], page 95,
[iscntrl], page 96.

isalpha (s) [Mapping Function]
Return a logical array which is true where the elements of s are letters and false where
they are not. This is equivalent to (islower (s) | isupper (s)).

See also: [isdigit], page 95, [ispunct]|, page 95, [isspace], page 95, [iscntrl], page 96,
[isalnum], page 94, [islower]|, page 95, [isupper|, page 95.

isletter (s) [Function File]
Return a logical array which is true where the elements of s are letters and false where
they are not. This is an alias for the isalpha function.

See also: [isalphal], page 95, [isdigit], page 95, [ispunct], page 95, [isspace], page 95,
[iscntrl], page 96, [isalnum], page 94.

islower (s) [Mapping Function]
Return a logical array which is true where the elements of s are lowercase letters and
false where they are not.

See also: [isupper], page 95, [isalphal, page 95, [isletter], page 95, [isalnum]|, page 94.

isupper (s) [Mapping Function]
Return a logical array which is true where the elements of s are uppercase letters and
false where they are not.

See also: [islower]|, page 95, [isalphal, page 95, [isletter], page 95, [isalnum], page 94.

isdigit (s) [Mapping Function]
Return a logical array which is true where the elements of s are decimal digits (0-9)
and false where they are not.

See also: [isxdigit], page 95, [isalphal], page 95, [isletter], page 95, [ispunct], page 95,
[isspace|, page 95, [iscntrl], page 96.

isxdigit (s) [Mapping Function]
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).
See also: [isdigit], page 95.

ispunct (s) [Mapping Function]
Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.

See also: [isalpha], page 95, [isdigit], page 95, [isspace], page 95, [iscntrl], page 96.
isspace (s) [Mapping Function]
Return a logical array which is true where the elements of s are whitespace characters

(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 96, [ispunct], page 95, [isalpha], page 95, [isdigit], page 95.

96 GNU Octave

iscntrl (s) [Mapping Function]
Return a logical array which is true where the elements of s are control characters
and false where they are not.
See also: [ispunct]|, page 95, [isspace], page 95, [isalpha], page 95, [isdigit], page 95.

isgraph (s) [Mapping Function]
Return a logical array which is true where the elements of s are printable characters
(but not the space character) and false where they are not.

See also: [isprint], page 96.

isprint (s) [Mapping Function]
Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph], page 96.

isascii (s) [Mapping Function]
Return a logical array which is true where the elements of s are ASCII characters (in
the range 0 to 127 decimal) and false where they are not.

isstrprop (str, prop) [Function File]
Test character string properties. For example:

isstrprop ("abc123", "alpha")

= [1, 1, 1, 0, 0, 0]
If str is a cell array, isstrpop is applied recursively to each element of the cell array.
Numeric arrays are converted to character strings.
The second argument prop must be one of

"alpha" True for characters that are alphabetic (letters).

n alIluIIl"
"alphanum"
True for characters that are alphabetic or digits.
"lower" True for lowercase letters.
"upper" True for uppercase letters.

"digit" True for decimal digits (0-9).
"xdigit" True for hexadecimal digits (a-fA-F0-9).

llspacell
"wspace" True for whitespace characters (space, formfeed, newline, carriage return,
tab, vertical tab).

"punct" True for punctuation characters (printing characters except space or letter
or digit).

"cntrl" True for control characters.

n graphll

"graphic"

True for printing characters except space.

Chapter 5: Strings 97

"print" True for printing characters including space.
"ascii" True for characters that are in the range of ASCII encoding.
See also: [isalpha], page 95, [isalnum], page 94, [islower], page 95, [isupper], page 95,

[isdigit], page 95, [isxdigit], page 95, [isspace], page 95, [ispunct], page 95, [iscntrl],
page 96, [isgraph], page 96, [isprint], page 96, [isascii], page 96.

Chapter 6: Data Containers 99

6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in
the same variable. Structures, which are C-like, and are indexed with named fields, and
cell arrays, where each element of the array can have a different data type and or shape.
Multiple input arguments and return values of functions are organized as another data
container, the comma separated list.

6.1 Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a =1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name from
the field name and indicates to Octave that this variable is a structure. To print the value
of the structure you can type its name, just as for any other variable:

X
= X =
{
a=1
b=
1 2
4
c = string
}

Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

100 GNU Octave

y =X
=y =
{
a=1
b=
1 2
4
c = string

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b
= ans =

¢ = string

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 101

a.b.c.d.e = 1;
a
= a =
{
b =
{
c =
{
1x1 struct array containing the fields:
d: 1x1 struct
b
X
b

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_
print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

val = struct_levels_to_print () [Built-in Function]

old_val = struct_levels_to_print (new_val) [Built-in Function]

struct_levels_to_print (new_val, "local") [Built-in Function]
Query or set the internal variable that specifies the number of structure levels to
display.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [print_struct_array_contents], page 101.

val = print_struct_array_contents () [Built-in Function]
old_val = print_struct_array_contents (new_val) [Built-in Function]
print_struct_array_contents (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies whether to print struct array contents.

If true, values of struct array elements are printed. This variable does not affect scalar
structures whose elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct_levels_to_print.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [struct_levels_to_print], page 101.
Functions can return structures. For example, the following function separates the real

and complex parts of a matrix and stores them in two elements of the same structure
variable.

102 GNU Octave

function y = £ (x)
y.re = real (x);
y.im = imag (x);

endfunction

When called with a complex-valued argument, £ returns the data structure containing
the real and imaginary parts of the original function argument.
f (rand (2) + rand (2) * I)
= ans =

{

im

0.26475 0.14828
0.18436 0.83669

re

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.8(2:3,2:3), x.v] =svd ([1, 2; 3, 4]);

X
= X =
{
u=
-0.40455 -0.91451
-0.91451 0.40455
S=
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
V=
-0.57605 0.81742
-0.81742 -0.57605
}

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 165).

Chapter 6: Data Containers 103

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.
Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

x(1).a = "stringl";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;
which creates a 2-by-1 structure array with two fields. Another way to create a structure

array is with the struct function (see Section 6.1.3 [Creating Structures|, page 104). As
previously, to print the value of the structure array, you can type its name:

X
= X =
{
1x2 struct array containing the fields:
a
b
}

Individual elements of the structure array can be returned by indexing the variable like
x (1), which returns a structure with two fields:

x(1)
= ans =
{
a = stringl
b= 1
b

Furthermore, the structure array can return a comma separated list of field values (see
Section 6.3 [Comma Separated Lists], page 120), if indexed by one of its own field names.
For example:

X.a
=
ans
ans

stringl
string2

Here is another example, using this comma separated list on the left-hand side of an
assignment:
[x.a] = deal ("new stringl", "new string2");
x(1).a
= ans
x(2).a
= ans = new string?2

new stringl

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions], page 135):

104 GNU Octave

x(3:4) = x(1:2);
[x([1,3]).a] = deal ("other stringl", "other string2");
x.a
=
ans = other stringl
ans = new string2
ans = other string2
ans = new string?2
The function size will return the size of the structure. For the example above
size (x)
= ans =

1 4
Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example
in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"})

= in =
{
1x3 struct array containing the fields:
calll
call2
b
in(1) = [1;
in.calll
=
ans = Inf

ans = last

6.1.3 Creating Structures

Besides the index operator ".", Octave can use dynamic naming " (var)" or the struct
function to create structures. Dynamic naming uses the string value of a variable as the
field name. For example:

a = "field2";
x.a =1;
x.(a) = 2;
X
= X =
{
a= 1
field2 = 2
}

Dynamic indexing also allows you to use arbitrary strings, not merely valid Octave identifiers
(note that this does not work on MATLAB):

Chapter 6: Data Containers 105

a = "long field with spaces (and funny char$)";
x.a = 1;
x.(a) = 2;
X
= X =
{
a= 1
long field with spaces (and funny char$) = 2
}

The warning id Octave:language-extension can be enabled to warn about this usage.
See [warning-ids], page 213.

More realistically, all of the functions that operate on strings can be used to build the
correct field name before it is entered into the data structure.

names ["Bill"; "Mary"; "John"];
ages [37; 26; 31];
for i = l:rows (names)

database. (names(i,:)) = ages(i);

endfor
database
= database =
{
Bill = 37
Mary = 26
John = 31
}

The third way to create structures is the struct command. struct takes pairs of
arguments, where the first argument in the pair is the fieldname to include in the structure
and the second is a scalar or cell array, representing the values to include in the structure
or structure array. For example:

struct ("field1l", 1, "field2", 2)
= ans =
{
fieldl
field2

nn
NI

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example:

106

GNU Octave

s = struct ("field1", {1, "one"}, "field2", {2, "two"},
"field3", 3);
s.fieldl
=
ans = 1
ans = one

s.field2
=
ans = 2
ans = two
s.field3
=
ans = 3
ans = 3

If you want to create a struct which contains a cell array as an individual field, you must
wrap it in another cell array as shown in the following example:

9]

struct ("field1l", {{1, "one"}}, "field2", 2)

= ans =
{
fieldl =
{
[1,1] = 1
[1,2] = one
}
field2 = 2
}
= struct () [Built-in Function]
= struct (fieldl, valuel, field2, value2, ...) [Built-in Function]
= struct (obj) [Built-in Function]

Create a scalar or array structure and initialize its values. The fieldl, field2, ...
variables are strings specifying the names of the fields and the valuel, value2, ...
variables can be of any type.

If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.

If the argument is an object, return the underlying struct.

Observe that the syntax is optimized for struct arrays. Consider the following exam-
ples:

Chapter 6: Data Containers 107

struct ("foo", 1)
= scalar structure containing the fields:
foo = 1

struct ("foo", {})
= 0x0 struct array containing the fields:
foo

struct ("foo", { {} B
= scalar structure containing the fields:
foo = {}(0x0)

struct ("foo", {1, 2, 3})
= 1x3 struct array containing the fields:
foo

The first case is an ordinary scalar struct—one field, one value. The second produces
an empty struct array with one field and no values, since s being passed an empty
cell array of struct array values. When the value is a cell array containing a single
entry, this becomes a scalar struct with that single entry as the value of the field.
That single entry happens to be an empty cell array.

Finally, if the value is a non-scalar cell array, then struct produces a struct array.

See also: [cell2struct], page 120, [fieldnames|, page 107, [getfield], page 109, [setfield],
page 108, [rmfield], page 109, [isfield], page 108, [orderfields|, page 109, [isstruct],
page 107, [structfun], page 490.

The function isstruct can be used to test if an object is a structure or a structure
array.

isstruct (x) [Built-in Function]
Return true if x is a structure or a structure array.

See also: [ismatrix], page 62, [iscell], page 113, [isa], page 39.

6.1.4 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

numfields (s) [Built-in Function]
Return the number of fields of the structure s.

See also: [fieldnames|, page 107.

names = fieldnames (struct) [Function File]
names = fieldnames (obj) [Function File]
names = fieldnames (javaobj) [Function File]
names = fieldnames (" jclassname") [Function File]

Return a cell array of strings with the names of the fields in the specified input.

When the input is a structure struct, the names are the elements of the structure.

108 GNU Octave

When the input is an Octave object obj, the names are the public properties of the
object.

When the input is a Java object javaobj or Java classname jclassname the name are
the public data elements of the object or class.

See also: [numfields|, page 107, [isfield], page 108, [orderfields], page 109, [struct],
page 106, [methods], page 706.

isfield (x, "name") [Built-in Function]
isfield (x, name) [Built-in Function]
Return true if the x is a structure and it includes an element named name.

If name is a cell array of strings then a logical array of equal dimension is returned.

See also: [fieldnames|, page 107.

sout = setfield (s, field, val) [Function File]
sout = setfield (s, sidx1, fieldl, fidx1, sidx2, field2, [Function File]
fidx2, ..., val)

Return a copy of the structure s with the field member field set to the value val.
For example:

struct ();
setfield (s, "foo bar", 42);

This is equivalent to

s.("foo bar") = 42;
Note that ordinary structure syntax s.foo bar = 42 cannot be used here, as the
field name is not a valid Octave identifier because of the space character. Using
arbitrary strings for field names is incompatible with MATLAB, and this usage will

emit a warning if the warning ID Octave:language-extension is enabled. See
[XREFwarning_ids], page 213.

With the second calling form, set a field of a structure array. The input sidx selects
an element of the structure array, field specifies the field name of the selected element,
and fidx selects which element of the field (in the case of an array or cell array). The
sidx, field, and fidx inputs can be repeated to address nested structure array elements.
The structure array index and field element index must be cell arrays while the field
name must be a string.

S
S

For example:
s = struct ("baz", 42);
setfield (s, {1}, "foo", {1}, "bar", 54)
=
ans =
scalar structure containing the fields:
baz = 42
foo =
scalar structure containing the fields:
bar = 54

The example begins with an ordinary scalar structure to which a nested scalar struc-
ture is added. In all cases, if the structure index sidx is not specified it defaults to

Chapter 6: Data Containers 109

1 (scalar structure). Thus, the example above could be written more concisely as
setfield (s, "foo", "bar", 54)
Finally, an example with nested structure arrays:

sa.foo = 1;

sa = setfield (sa, {2}, "bar", {3}, "baz", {1, 4}, 5);

sa (2) .bar(3)

=

ans =
scalar structure containing the fields:
baz = 0 0 0 5

Here sa is a structure array whose field at elements 1 and 2 is in turn another structure
array whose third element is a simple scalar structure. The terminal scalar structure
has a field which contains a matrix value.
Note that the same result as in the above example could be achieved by:

sa.foo = 1;
sa(2).bar(3).baz(1,4) =5

See also: [getfield], page 109, [rmfield], page 109, [orderfields], page 109, [isfield],
page 108, [fieldnames], page 107, [isstruct], page 107, [struct], page 106.

val = getfield (s, field) [Function File]
val = getfield (s, sidx1, field1, fidx1, ...) [Function File]
Get the value of the field named field from a structure or nested structure s.
If s is a structure array then sidx selects an element of the structure array, field
specifies the field name of the selected element, and fidx selects which element of
the field (in the case of an array or cell array). See setfield for a more complete
description of the syntax.

See also: [setfield], page 108, [rmfield], page 109, [orderfields|, page 109, [isfield],
page 108, [fieldnames], page 107, [isstruct], page 107, [struct], page 106.

sout
sout

rmfield (s, "f") [Built-in Function]
rmfield (s, f) [Built-in Function]
Return a copy of the structure (array) s with the field f removed.

If f is a cell array of strings or a character array, remove each of the named fields.

See also: [orderfields], page 109, [fieldnames|, page 107, [isfield], page 108.

]
sout] = orderfields (s1) Function File]
sout] = orderfields (s1, s2) Function File
sout] = orderfields (

sout] = orderfields (si, p) Function File

[sout, p] = orderfields (...) Function File
Return a copy of sI with fields arranged alphabetically, or as specified by the second
input.

[

[]
s1, {cellstr}) [Function File]

[]

[|

Given one input struct sl, arrange field names alphabetically.

If a second struct argument is given, arrange field names in sl as they appear in s2.
The second argument may also specify the order in a cell array of strings cellstr. The
second argument may also be a permutation vector.

110 GNU Octave

The optional second output argument p is the permutation vector which converts the
original name order to the new name order.

Examples:

s = struct ("d", 4, "b", 2, "a", 1, "c", 3);
t1 = orderfields (s)
= tl =
{

0 oW
[
S wWw N -

}
t = struct ("d", {F, "c<", {3}, "b", {}, "a", {});
t2 = orderfields (s, t)

= t2 =
{
d= 4
c= 3
b= 2
a= 1
}
t3 = orderfields (s, [3, 2, 4, 1])
= t3 =
{
a= 1
b= 2
c= 3
d= 4
}
[t4, p] = orderfields (s, {"d", "c", "b", "a"})
= t4 =
{
d= 4
c= 3
b= 2
a= 1
}
p =
1
4
2
3

See also: [fieldnames], page 107, [getfield], page 109, [setfield], page 108, [rmfield],
page 109, [isfield], page 108, [isstruct], page 107, [struct], page 106.

Chapter 6: Data Containers 111

substruct (type, subs, ...) [Function File]
Create a subscript structure for use with subsref or subsasgn.

For example:

idx = substruct ("Q", {3, ":"})
=
idx =
{
type
subs

{

O

(1,11 =
[1,2]

|
w

}
}
x = [1,

4,
7

b b

D W

, 91;
subsref (x, idx)
=7 8 9

©

b

~ 00 01 N

See also: [subsref], page 710, [subsasgn], page 712.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements|, page 165). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.
See [structfun], page 490.

Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

¢ = struct2cell (s) [Built-in Function]
Create a new cell array from the objects stored in the struct object. If f is the
number of fields in the structure, the resulting cell array will have a dimension vector
corresponding to [f size(s)]. For example:

112 GNU Octave

s = struct ("name", {"Peter", "Hannah", "Robert"},
"age", {23, 16, 3});
¢ = struct2cell (s)
= ¢ = {2x1x3 Cell Array}
c(1,1,:)(C:)
=
{
[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert
}
c(2,1,:)(:)
=
{
[1,1] = 23
[2,1] = 16
[3,1] = 3
}

See also: [cell2struct], page 120, [fieldnames], page 107.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like N-dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.2.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix
¢ = {"a string", rand(2, 2)};
To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:
c{1}
= ans = a string
As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes
c{1:2}
= ans = a string
= ans

0.593993 0.627732
0.377037 0.033643

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array

Chapter 6: Data Containers 113

c{3} =3
= ¢ =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

Details on indexing cell arrays are explained in Section 6.2.3 [Indexing Cell Arrays],
page 116.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

celldisp (c) [Function File]
celldisp (c, name) [Function File]
Recursively display the contents of a cell array. By default the values are displayed
with the name of the variable c. However, this name can be replaced with the variable
name. For example:
c =411, 2, {31, 32}};
celldisp (c, "b")
=
b{1}
1
b{2}
2
b{3}{1}
31
b{3}{2}
32

See also: [disp|, page 231.

To test if an object is a cell array, use the iscell function. For example:

iscell (c)
= ans = 1
iscell (3)
= ans = 0
iscell (x) [Built-in Function]

Return true if x is a cell array object.

See also: [ismatrix|, page 62, [isstruct], page 107, [iscellstr]|, page 119, [isa], page 39.

114 GNU Octave

6.2.2 Creating Cell Arrays

The introductory example (see Section 6.2.1 [Basic Usage of Cell Arrays|, page 112) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices

c = cell (2,2)

= c =
{
[1,1] = [1(0x0)
[2,1] = [1(0x0)
[1,2] = [1(0x0)
[2,2] = [1(0x0)
}

Just like numerical arrays, cell arrays can be multi-dimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

cl = cell (3, 4, 5);
c2 = cell ([3, 4, 5]);
size (cl1)
= ans =
3 4 5

As can be seen, the [size|, page 45 function also works for cell arrays. As do other functions
describing the size of an object, such as [length], page 45, [numel], page 44, [rows], page 44,
and [columns|, page 44.

cell (n) [Built-in Function]
cell (m, n) [Built-in Function]
cell (m,n k, ...) [Built-in Function]
cell (mn ...]) [Built-in Function]
Create a new cell array object.

If invoked with a single scalar integer argument, return a square NxN cell array. If
invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with the given dimensions.

See also: [cellstr], page 119, [mat2cell], page 115, [num2cell], page 114, [struct2cell],
page 111.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell, mat2cell and cellslices
functions.

Chapter 6: Data Containers 115

C = num2cell (4) [Built-in Function]
num2cell (4, dim) [Built-in Function]
Convert the numeric matrix A to a cell array. If dim is defined, the value C is of
dimension 1 in this dimension and the elements of A are placed into C in slices. For

Q
]

example:
num2cell ([1,2;3,4])
=
{
(1,11 = 1
[2,1] = 3
[1,2] = 2
[2,2] = 4
}
num2cell ([1,2;3,4]1,1)
=
{
[1,1] =
1
3
[1,2] =
2
4
}
See also: [mat2cell], page 115.
C = mat2cell (4, m, n) [Built-in Function]
C = mat2cell (4,d1,d2, ...) [Built-in Function]
C = mat2cell (4, r) [Built-in Function]
Convert the matrix A to a cell array. If A is 2-D, then it is required that sum (m)
== gize (4, 1) and sum (n) == size (4, 2). Similarly, if A is multi-dimensional
and the number of dimensional arguments is equal to the dimensions of A, then it is
required that sum (di) == size (4, i).

Given a single dimensional argument r, the other dimensional arguments are assumed
to equal size (4,1).

An example of the use of mat2cell is
mat2cell (reshape (1:16,4,4), [3,1], [3,1])

=
{
[1,1] =
1 5 9
2 6 10
3 7 11

116 GNU Octave

[1,2]
13
14
15

[2,2]

16
}

See also: [num2cell], page 114, [cell2mat], page 119.

sl = cellslices (x, 1b, ub, dim) [Built-in Function]
Given an array x, this function produces a cell array of slices from the array deter-
mined by the index vectors Ib, ub, for lower and upper bounds, respectively. In other
words, it is equivalent to the following code:

n = length (1b);
sl = cell (1, n);
for i = 1:length (1b)
s1{i} = x(:,...,1b(i):ub(di),...,:);
endfor

The position of the index is determined by dim. If not specified, slicing is done along
the first non-singleton dimension.

See also: [cell2mat], page 119, [cellindexmat], page 118, [cellfun], page 488.

6.2.3 Indexing Cell Arrays

As shown in see Section 6.2.1 [Basic Usage of Cell Arrays|, page 112 elements can be
extracted from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access
subarrays which are still cell arrays, you need to use the ‘(C and ‘)’ operators. The following
example illustrates the difference:

c = {Illll, II2II’ ll3ll; “X", Ilyll’ llzll; ||4ll, "5“’ ll6|l};

c{2,3}
= ans = z
c(2,3)
= ans =
{
[1,1] = z
}

So with ‘{}’ you access elements of a cell array, while with ()’ you access a sub array of a
cell array.

Using the ‘C and ‘)’ operators, indexing works for cell arrays like for multi-dimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:

Chapter 6: Data Containers 117

c(:, [1, 3]) = {0}
= =
{
[1,1] =
[2,1] =
[3,1] =
[1,2] =
[2,2] = 10
[3,2] = 20
[1,3] =
[2,3] =
[3,3] =0
}

Note, that the above can also be achieved like this:

c(:, [1, 31) = 0;

N O O O

o O

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ()’ you can exchange the first
and the second row of a cell array as in the following command:

c =41, 2, 3; 4, 5, 6};
c(l1, 21, :) = c([2, 11,)
= =
{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =
}

Accessing multiple elements of a cell array with the ‘{” and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.3 [Comma Separated
Lists], page 120). Using the ‘{’ and ‘}’ operators the first two rows in the above example
can be swapped back like this:

[c{[1,2], :}] = deal (c{[2, 11, :})
=

W o N O~ s

{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

D WO N

118 GNU Octave

As for struct arrays and numerical arrays, the empty matrix ‘[]’ can be used to delete
elements from a cell array:

X = {||1ll 1I2||; IISII, ||4ll};

x(1,) =[]
= X =
{
[1,1] = 3
[1,2] = 4
}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

X = {lllll, ||2||; Il3|l, ||4ll};

x{1, 3 = 1[I
= x =
{
[1,1] = [1(0x0)
[2,1] = 3
[1,2] = [](0x0)
[2,2] = 4
}

The indexing operations operate on the cell array and not on the objects within the cell
array. By contrast, cellindexmat applies matrix indexing to the objects within each cell
array entry and returns the requested values.

y = cellindexmat (x, varargin) [Built-in Function]
Given a cell array of matrices x, this function computes

Y = cell (size (X));
for i = 1:numel (X)

Y{i} = X{i}(varargin{:1});
endfor

See also: [cellslices], page 116, [cellfun], page 488.

6.2.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.1 [Concatenating Strings|, page 70), while the function
cellstr converts a character array to a cell array of strings:

Chapter 6: Data Containers 119

a = ["hello"; "world"];
c = cellstr (a)

= c =
{
[1,1] = hello
[2,1] = world
}
cstr = cellstr (strmat) [Built-in Function]

Create a new cell array object from the elements of the string array strmat.

Each row of strmat becomes an element of cstr. Any trailing spaces in a row are
deleted before conversion.

To convert back from a cellstr to a character array use char.

See also: [cell], page 114, [char|, page 71.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:

¢ = {"hello", "world"};
strcmp ("hello", c¢)
= ans =
1 0

The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.1 [Concatenating Strings|, page 70), strcmp, strncmp, strcmpi, strncmpi (see
Section 5.4 [Comparing Strings|, page 75), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.5 [Manipulating Strings|, page 77)
and str2double (see Section 5.6 [String Conversions|, page 89).

The function iscellstr can be used to test if an object is a cell array of strings.

iscellstr (cell) [Built-in Function]
Return true if every element of the cell array cell is a character string.

See also: [ischar|, page 68.

6.2.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array. See [cellfun],
page 488.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct
functions.

120 GNU Octave

m = cell2mat (c) [Function File]
Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a
hyperrectangle. FElements of ¢ must be numeric, logical, or char matrices; or cell
arrays; or structs; and cat must be able to concatenate them together.

See also: [mat2cell], page 115, [num2cell], page 114.

cell2struct (cell, fields) [Built-in Function]
cell2struct (cell, fields, dim) [Built-in Function]
Convert cell to a structure. The number of fields in fields must match the number of
elements in cell along dimension dim, that is numel (fields) == size (cell, dim).

If dim is omitted, a value of 1 is assumed.

A = cell2struct ({"Peter", "Hannah", "Robert";
185, 170, 1687},
{"Name","Height"}, 1);
ACD)
=

Peter
185

Name
Height
}

See also: [struct2cell], page 111, [cell2mat], page 119, [struct], page 106.

6.3 Comma Separated Lists

Comma separated lists® are the basic argument type to all Octave functions - both for input
and return arguments. In the example

max (a, b)
‘a, b’ is a comma separated list. Comma separated lists can appear on both the right and
left hand side of an assignment. For example

x=[1010011; 000000 7];

[i, j] = find (x, 2, "last");

Here, ‘x, 2, "last"’ is a comma separated list constituting the input arguments of find.
find returns a comma separated list of output arguments which is assigned element by
element to the comma separated list ‘1, j’.

Another example of where comma separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices|, page 48) or the creation of a cell array with {2}
(see Section 6.2.1 [Basic Usage of Cell Arrays|, page 112). In the expressions

a=[1, 2, 3, 4];
c =44, 5, 6, 7};
both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma separated lists.

Comma separated lists cannot be directly manipulated by the user. However, both

structure arrays and cell arrays can be converted into comma separated lists, and thus used

1 Comma-separated lists are also sometimes informally referred to as cs-lists.

Chapter 6: Data Containers 121

in place of explicitly written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.3.1 Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.2.3 [Indexing Cell Arrays|, page 116), elements
of a cell array can be extracted into a comma separated list with the { and } operators. By
surrounding this list with [and], it can be concatenated into an array. For example:

a =41, [2, 3], 4, 5, 6};
b = [a{1:4}]
= b =

1 2 3 4 b

Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:

a = {1, rand(2, 2), "three"};
b={a{l1, 3] } 1}
= b =
{
(1,11 = 1
[1,2] = three
}

Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, <{5});

< GNU Octave is Free Software
printf ("Y%s ", c{:});

-4 GNU Octave is Free Software

If used on the left-hand side of an assignment, a comma separated list generated with
{} can be assigned to. An example is

122 GNU Octave

in{1} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in{2} = inf;
in{3} = "last";
in{4} = "first";
out = cell (4, 1);
[out{1:3}] = find (in{1 : 3});
[out{4:6}] = find (in{[1, 2, 4]1})
= out =
{
[1,1] = 1
[2,1] =9
[3,1] = 90
[4,1] = 1
[3,1] = 1
[4,1] = 10
}

6.3.2 Comma Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma separated lists. This is done by
addressing one of the fields of a structure array. For example:

x = ceil (randn (10, 1));
in = struct ("calll", {x, 3, "last"},
"call2", {x, inf, "first"});
out = struct ("calll", cell (2, 1), "call2", cell (2, 1));
[out.calll] = find (in.calll);
[out.call?2] = find (in.call2);

Chapter 7: Variables 123

7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

X

x15

__foo_bar_baz__

fucnrdthsucngtagdjb
However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value.
Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions|, page 149.

There is one built-in variable with a special meaning. The ans variable always contains
the result of the last computation, where the output wasn’t assigned to any variable. The
code a = cos (pi) will assign the value -1 to the variable a, but will not change the value
of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same
program. Variables may not be used before they have been given a value. Doing so results
in an error.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable.
For example, after the expression
372 + 472
is evaluated, the value returned by ans is 25.
isvarname (name) [Built-in Function]
Return true if name is a valid variable name.

See also: [iskeyword], page 897, [exist], page 130, [whol, page 128.

varname = genvarname (str) [Function File]
varname = genvarname (str, exclusions) [Function File]
Create valid unique variable name(s) from str.

If str is a cellstr, then a unique variable is created for each cell in str.

genvarname ({"foo", "foo"})
=
{
[1,1] = foo
[1,2] = fool

3

124 GNU Octave

If exclusions is given, then the variable(s) will be unique to each other and to exclu-
sions (exclusions may be either a string or a cellstr).

x = 3.141;
genvarname ("x", who ())
= x1

Note that the result is a char array or cell array of strings, not the variables themselves.
To define a variable, eval () can be used. The following trivial example sets x to 42.

name = genvarname ("x");
eval ([name " = 42"]);
= x = 42
This can be useful for creating unique struct field names.

x = struct ();
for i = 1:3
x.(genvarname ("a", fieldnames (x))) = i;
endfor
= x =
{
a= 1
al = 2
a2 = 3
}
Since variable names may only contain letters, digits, and underscores, genvarname
will replace any sequence of disallowed characters with an underscore. Also, variables
may not begin with a digit; in this case an ‘x’ is added before the variable name.

Variable names beginning and ending with two underscores "__" are valid, but they
are used internally by Octave and should generally be avoided; therefore, genvarname
will not generate such names.

genvarname will also ensure that returned names do not clash with keywords such as
"for" and "if". A number will be appended if necessary. Note, however, that this
does not include function names such as "sin". Such names should be included in
exclusions if necessary.

See also: [isvarname|, page 123, [iskeyword], page 897, [exist], page 130, [who],
page 128, [tempname], page 264, [eval], page 155.

namelengthmax () [Function File]
Return the MATLAB compatible maximum variable name length.

Octave is capable of storing strings up to 23! — 1 in length. However for MATLAB
compatibility all variable, function, and structure field names should be shorter than
the length returned by namelengthmax. In particular, variables stored to a MATLAB
file format (‘*.mat’) will have their names truncated to this length.

7.1 Global Variables

A variable that has been declared global may be accessed from within a function body
without having to pass it as a formal parameter.

Chapter 7: Variables 125

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d = 3 e f =5

A global variable may only be initialized once in a global statement. For example, after
executing the following code
global gvar = 1
global gvar = 2
the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.
It is necessary declare a variable as global within a function body in order to access it.
For example,
global x
function £ ()
x =1;
endfunction

f O

does not set the value of the global variable x to 1. In order to change the value of the
global variable x, you must also declare it to be global within the function body, like this

function £ (O
global x;
x =1;
endfunction
Passing a global variable in a function parameter list will make a local copy and not
modify the global value. For example, given the function
function f (x)
x =0
endfunction
and the definition of x as a global variable at the top level,
global x = 13
the expression
f (%)
will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

isglobal (name) [Built-in Function]
Return true if name is a globally visible variable. For example:
global x
isglobal ("x")
= 1

See also: [isvarname|, page 123, [exist], page 130.

126 GNU Octave

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in
memory between subsequent calls to the same function. The difference between persistent
variables and global variables is that persistent variables are local in scope to a particular
function and are not visible elsewhere.

The following example uses a persistent variable to create a function that prints the
number of times it has been called.

function count_calls ()
persistent calls = 0;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

for i = 1:3
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times
- ’count_calls’ has been called 3 times

As the example shows, a variable may be declared persistent using a persistent decla-
ration statement. The following statements are all persistent declarations.

persistent a

persistent a b
persistent ¢ = 2
persistent d = 3 e £ =5

The behavior of persistent variables is equivalent to the behavior of static variables in

C.

Like global variables, a persistent variable may only be initialized once. For example,
after executing the following code

persistent pvar = 1
persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether
it is empty, as the following example illustrates.

function count_calls ()
persistent calls;
if (isempty (calls))

calls = 0;
endif
printf ("’count_calls’ has been called %d times\n",
++calls);

endfunction

Chapter 7: Variables 127

This implementation behaves in exactly the same way as the previous implementation of
count_calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. As-
suming that the implementation of count_calls is saved on disk, we get the following
behavior.

for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

clear

for i = 1:2
count_calls ();

endfor

- ’count_calls’ has been called 3 times
- ’count_calls’ has been called 4 times

clear all
for i = 1:2
count_calls ();
endfor
-4 ’count_calls’ has been called 1 times
-4 ’count_calls’ has been called 2 times

clear count_calls

for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
-1 ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire
function definition will be removed from memory. If you do not want a persistent variable to
be removed from memory even if the function is cleared, you should use the mlock function
(see Section 11.9.6 [Function Locking], page 196).

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables
are available at the prompt. The function who and its siblings whos and whos_line_format
will show different information about what is in memory, as the following shows.

128 GNU Octave

str = "A random string";
who -variables
- **x* local user variables:

_|

-+ __nargin__ str
who [Command]
who pattern . .. [Command]
who option pattern . .. [Command]
C = who ("pattern", ...) [Command]

List currently defined variables matching the given patterns. Valid pattern syntax
is the same as described for the clear command. If no patterns are supplied, all
variables are listed. By default, only variables visible in the local scope are displayed.

The following are valid options but may not be combined.
global List variables in the global scope rather than the current scope.

-regexp The patterns are considered to be regular expressions when matching the
variables to display. The same pattern syntax accepted by the regexp
function is used.

-file The next argument is treated as a filename. All variables found within the
specified file are listed. No patterns are accepted when reading variables
from a file.

If called as a function, return a cell array of defined variable names matching the
given patterns.

See also: [whos], page 128, [isglobal|, page 125, [isvarname]|, page 123, [exist], page 130,
[regexp], page 85.

whos [Command]
whos pattern . .. [Command]
whos option pattern . . . [Command]
S = whos ("pattern", ...) [Command]

Provide detailed information on currently defined variables matching the given pat-
terns. Options and pattern syntax are the same as for the who command. Extended
information about each variable is summarized in a table with the following default

entries.
Attr Attributes of the listed variable. Possible attributes are:
blank Variable in local scope
a Automatic variable. An automatic variable is one created by

the interpreter, for example argn.
C Variable of complex type.
f Formal parameter (function argument).

Variable with global scope.

T B

Persistent variable.

Chapter 7: Variables 129

Name

Size

Bytes
Class

The name of the variable.

The logical size of the variable. A scalar is 1x1, a vector is 1xN or Nx1,
a 2-D matrix is MxN.

The amount of memory currently used to store the variable.

The class of the variable. Examples include double, single, char, uint16,
cell, and struct.

The table can be customized to display more or less information through the function
whos_line_format.

If whos is called as a function, return a struct array of defined variable names matching
the given patterns. Fields in the structure describing each variable are: name, size,
bytes, class, global, sparse, complex, nesting, persistent.

See also: [who|, page 128, [whos_line_format], page 129.

val = whos_line_format () [Built-in Function]
old_val = whos_line_format (new_val) [Built-in Function]
whos_line_format (new_val, "local") [Built-in Function]

Query or set the format string used by the command whos.

A full format string is:

Y% [modifier]<command>[:width[:left-min[:balance]]];

The following command sequences are available:

%a

YAS)
he
he
i
hs

ht

Prints attributes of variables (g=global, p=persistent, f=formal parame-
ter, a=automatic variable).

Prints number of bytes occupied by variables.
Prints class names of variables.

Prints elements held by variables.

Prints variable names.

Prints dimensions of variables.

Prints type names of variables.

Every command may also have an alignment modifier:

1
r

C

Left alignment.
Right alignment (default).

Column-aligned (only applicable to command %s).

The width parameter is a positive integer specifying the minimum number of columns
used for printing. No maximum is needed as the field will auto-expand as required.

The parameters left-min and balance are only available when the column-aligned
modifier is used with the command ‘%s’. balance specifies the column number within
the field width which will be aligned between entries. Numbering starts from 0 which
indicates the leftmost column. left-min specifies the minimum field width to the
left of the specified balance column.

130 GNU Octave

The default format is " %a:4; %1n:6; %cs:16:6:1; %rb:12; %lc:-1;\n".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [whos|, page 128.

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behavior of a program depending
on the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))
disp ("The program has no ’meaning’");

endif
c = exist (name) [Built-in Function]
¢ = exist (name, type) [Built-in Function]

Check for the existence of name as a variable, function, file, directory, or class.

The return code ¢ is one of

1 name is a variable.

2 name is an absolute file name, an ordinary file in Octave’s path, or (after
appending ‘.m’) a function file in Octave’s path.

3 name is a ‘.oct’ or ‘.mex’ file in Octave’s path.

5 name is a built-in function.

7 name is a directory.

103 name is a function not associated with a file (entered on the command
line).

0 name does not exist.

If the optional argument type is supplied, check only for symbols of the specified type.
Valid types are

"var" Check only for variables.

"builtin"
Check only for built-in functions.

"dir" Check only for directories.

"file" Check only for files and directories.

"class" Check only for classes. (Note: This option is accepted, but not currently
implemented)

If no type is given, and there are multiple possible matches for name, exist will
return a code according to the following priority list: variable, built-in function, oct-
file, directory, file, class.

exist returns 2 if a regular file called name is present in Octave’s search path. If you
want information about other types of files not on the search path you should use
some combination of the functions file_in_path and stat instead.

Chapter 7: Variables 131

See also: [file_in_loadpath], page 191, [file_in_path], page 747, [dir_in_loadpath],
page 191, [stat], page 744.

Usually Octave will manage the memory, but sometimes it can be practical to remove
variables from memory manually. This is usually needed when working with large variables
that fill a substantial part of the memory. On a computer that uses the IEEE floating point
format, the following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);

Since having this variable in memory might slow down other computations, it can be nec-
essary to remove it manually from memory. The clear function allows this.

clear [options| pattern . .. [Command]
Delete the names matching the given patterns from the symbol table. The pattern
may contain the following special characters:

? Match any single character.
* Match zero or more characters.

[Iist] Match the list of characters specified by list. If the first character is
I or 7, match all characters except those specified by list. For example,
the pattern ‘[a-zA-Z]’ will match all lowercase and uppercase alphabetic
characters.

For example, the command
clear foo b*r

clears the name foo and all names that begin with the letter b and end with the letter
r.

If clear is called without any arguments, all user-defined variables (local and global)
are cleared from the symbol table. If clear is called with at least one argument, only
the visible names matching the arguments are cleared. For example, suppose you
have defined a function foo, and then hidden it by performing the assignment foo
= 2. Executing the command clear foo once will clear the variable definition and
restore the definition of foo as a function. Executing clear foo a second time will
clear the function definition.

The following options are available in both long and short form

-all, —a Clears all local and global user-defined variables and all functions from
the symbol table.

-exclusive, -x
Clears the variables that don’t match the following pattern.

—-functions, -f
Clears the function names and the built-in symbols names.

-global, -g
Clears the global symbol names.

-variables, -v
Clears the local variable names.

132 GNU Octave

-classes, -c
Clears the class structure table and clears all objects.

-regexp, -r
The arguments are treated as regular expressions as any variables that
match will be cleared.

With the exception of exclusive, all long options can be used without the dash as
well.

pack () [Function File]
Consolidate workspace memory in MATLAB.

This function is provided for compatibility, but does nothing in Octave.
See also: [clear], page 131.
Information about a function or variable such as its location in the file system can also be

acquired from within Octave. This is usually only useful during development of programs,
and not within a program.

type name ... [Command]

type -q name ... [Command]

text = type ("name", ...) [Function File]
Display the contents of name which may be a file, function (m-file), variable, operator,
or keyword.

type normally prepends a header line describing the category of name such as function
or variable; The ‘-q’ option suppresses this behavior.

If no output variable is used the contents are displayed on screen. Otherwise, a cell
array of strings is returned, where each element corresponds to the contents of each
requested function.

which name ... [Command]
Display the type of each name. If name is defined from a function file, the full name
of the file is also displayed.

See also: [help], page 20, [lookfor]|, page 21.

what [Command]
what dir [Command]
w = what (dir) [Function File]

List the Octave specific files in directory dir.
If dir is not specified then the current directory is used.

If a return argument is requested, the files found are returned in the structure w. The
structure contains the following fields:

path Full path to directory dir
m Cell array of m-files
mat Cell array of mat files

mex Cell array of mex files

Chapter 7: Variables 133

oct
mdl
slx

P
classes

packages

Cell array of oct files

Cell array of mdl files

Cell array of slx files

Cell array of p-files

Cell array of class directories (‘@classname/’)

Cell array of package directories (‘+pkgname/’)

Compatibility Note: Octave does not support mdl, slx, and p files; nor does it support
package directories. what will always return an empty list for these categories.

See also: [which], page 132, [Is], page 765, [exist], page 130.

Chapter 8: Expressions 135

8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates
to a value, which you can print, test, store in a variable, pass to a function, or assign a new
value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements
contain one or more expressions which specify data to be operated on. Asin other languages,
expressions in Octave include variables, array references, constants, and function calls, as
well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or
vector.

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used
to select entire rows or columns.

Vectors are indexed using a single index expression. Matrices (2-D) and higher multi-
dimensional arrays are indexed using either one index or N indices where N is the dimension
of the array. When using a single index expression to index 2-D or higher data the elements
of the array are taken in column-first order (like Fortran).

The output from indexing assumes the dimensions of the index expression. For example:

a(2) # result is a scalar
a(1:2) # result is a row vector
a([1; 2]) # result is a column vector

As a special case, when a colon is used as a single index, the output is a column vector
containing all the elements of the vector or matrix. For example:

a(:) # result is a column vector
a(:)’ # result is a row vector

The above two code idioms are often used in place of reshape when a simple vector,
rather than an arbitrarily sized array, is needed.

Given the matrix
a=[1, 2; 3, 4]
all of the following expressions are equivalent and select the first row of the matrix.

a(l, [1, 2]) # row 1, columns 1 and 2
a(l, 1:2) # row 1, columns in range 1-2
a(l, :) # row 1, all columns

In index expressions the keyword end automatically refers to the last entry for a partic-
ular dimension. This magic index can also be used in ranges and typically eliminates the
needs to call size or length to gather array bounds before indexing. For example:

136 GNU Octave

a=[1, 2, 3, 4];

a(l:end/2) # first half of a => [1, 2]
a(end + 1) = 5; # append element

a(end) = [1; # delete element

a(1:2:end) # odd elements of a => [1, 3]
a(2:2:end) # even elements of a => [2, 4]
a(end:-1:1) # reversal of a => [4, 3, 2 , 1]

8.1.1 Advanced Indexing

An array with ‘n’ dimensions can be indexed using ‘m’ indices. More generally, the set of
index tuples determining the result is formed by the Cartesian product of the index vectors
(or ranges or scalars).

For the ordinary and most common case, m == n, and each index corresponds to its
respective dimension. If m < n and every index is less than the size of the array in the
i*" dimension, m(i) < n(i), then the index expression is padded with trailing singleton
dimensions ([ones (m-n, 1)]). If m < n but one of the indices m(i) is outside the size of
the current array, then the last n-m+1 dimensions are folded into a single dimension with
an extent equal to the product of extents of the original dimensions. This is easiest to
understand with an example.

a = reshape (1:8, 2, 2, 2) # Create 3-D array
a =

ans(:,:,1)

1 3
2 4
ans(:,:,2) =
5 7
6 8
a(2,1,2); # Case (m == n): ans = 6
a(2,1); # Case (m < n), idx within array:
equivalent to a(2,1,1), ans = 2
a(2,4); # Case (m < n), idx outside array:
Dimension 2 & 3 folded into new dimension of size 2x2 = 4

Select 2nd row, 4th element of [2, 4, 6, 8], ans = 8

One advanced use of indexing is to create arrays filled with a single value. This can be
done by using an index of ones on a scalar value. The result is an object with the dimensions
of the index expression and every element equal to the original scalar. For example, the
following statements

a = 13;
a(ones (1, 4))
produce a vector whose four elements are all equal to 13.

Chapter 8: Expressions 137

Similarly, by indexing a scalar with two vectors of ones it is possible to create a matrix.
The following statements

a = 13;
a(ones (1, 2), ones (1, 3))

create a 2x3 matrix with all elements equal to 13.
The last example could also be written as
13(ones (2, 3))

It is more efficient to use indexing rather than the code construction scalar * ones (N,
M, ...) because it avoids the unnecessary multiplication operation. Moreover, multiplica-
tion may not be defined for the object to be replicated whereas indexing an array is always
defined. The following code shows how to create a 2x3 cell array from a base unit which is
not itself a scalar.

{"Hello"}(ones (2, 3))

It should be, noted that ones (1, n) (a row vector of ones) results in a range (with zero
increment). A range is stored internally as a starting value, increment, end value, and total
number of values; hence, it is more efficient for storage than a vector or matrix of ones
whenever the number of elements is greater than 4. In particular, when ‘r’ is a row vector,
the expressions

r(ones (1, n), :)
r(ones (n, 1), :)
will produce identical results, but the first one will be significantly faster, at least for ‘r’

and ‘n’ large enough. In the first case the index is held in compressed form as a range which
allows Octave to choose a more efficient algorithm to handle the expression.

A general recommendation, for a user unaware of these subtleties, is to use the function
repmat for replicating smaller arrays into bigger ones.

A second use of indexing is to speed up code. Indexing is a fast operation and judicious
use of it can reduce the requirement for looping over individual array elements which is a
slow operation.

Consider the following example which creates a 10-element row vector a containing the
values a; = V/i.
for i = 1:10
a(i) = sqrt (1);
endfor
It is quite inefficient to create a vector using a loop like this. In this case, it would have
been much more efficient to use the expression
a = sqrt (1:10);
which avoids the loop entirely.
In cases where a loop cannot be avoided, or a number of values must be combined to
form a larger matrix, it is generally faster to set the size of the matrix first (pre-allocate

storage), and then insert elements using indexing commands. For example, given a matrix
a?

138 GNU Octave

[nr, nc] = size (a);

x = zeros (nr, n * nc);

for i = 1:n
x(:,(i-1)*nc+l:i*nc) = a;

endfor

is considerably faster than

X = a;

for i = 1:n-1
x = [x, al;

endfor

because Octave does not have to repeatedly resize the intermediate result.

ind = sub2ind (dims, i, j) [Function File]
ind = sub2ind (dims, s1, s2, ..., sN) [Function File]
Convert subscripts to a linear index.

The following example shows how to convert the two-dimensional index (2,3) of a
3-by-3 matrix to a linear index. The matrix is linearly indexed moving from one
column to next, filling up all rows in each column.

linear_index = sub2ind ([3, 3], 2, 3)

= 8

See also: [ind2sub|, page 138.

[s1, s2, ..., sN] = ind2sub (dims, ind) [Function File]
Convert a linear index to subscripts.
The following example shows how to convert the linear index 8 in a 3-by-3 matrix
into a subscript. The matrix is linearly indexed moving from one column to next,
filling up all rows in each column.
[r, c] = ind2sub ([3, 3], 8)
= 1r = 2
= c= 3

See also: [sub2ind], page 138.

isindex (ind) [Built-in Function]

isindex (ind, n) [Built-in Function]
Return true if ind is a valid index. Valid indices are either positive integers (although
possibly of real data type), or logical arrays. If present, n specifies the maximum
extent of the dimension to be indexed. When possible the internal result is cached so
that subsequent indexing using ind will not perform the check again.

val = allow_noninteger_range_as_index () [Built-in Function]
old_val = allow_noninteger_range_as_index (new_val) [Built-in Function]
allow_noninteger_range_as_index (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether non-integer ranges are allowed
as indices. This might be useful for MATLAB compatibility; however, it is still not
entirely compatible because MATLAB treats the range expression differently in different
contexts.

Chapter 8: Expressions 139

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it
by name at any point in the program. For example, the function sqrt computes the square
root of a number.

A fixed set of functions are built-in, which means they are available in every Octave
program. The sqrt function is one of these. In addition, you can define your own functions.
See Chapter 11 [Functions and Scripts|, page 171, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more
than one argument, they are separated by commas. If there are no arguments, you can
omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that
a function call was intended. Here are some examples:

sqrt (x"2 + y~2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the
particular usage, and their behavior is different depending on the number of arguments
supplied.

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of sqrt (argument)
is the square root of the argument. A function can also have side effects, such as assigning
the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,
the following statement
[u, s, v] = svd (a)
computes the singular value decomposition of the matrix a and assigns the three result
matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is
allowed to be a list of variable names or index expressions. See also Section 8.1 [Index
Expressions], page 135, and Section 8.6 [Assignment Ops], page 149.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory
before being passed to the function. There is currently no way to specify that a function
parameter should be passed by reference instead of by value. This means that it is impossible

140 GNU Octave

to directly alter the value of a function parameter in the calling function. It can only change
the local copy within the function body. For example, the function

function f (x, n)
while (n-- > 0)
disp (x);
endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as a
temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a
function called as

foo = "bar";
fcn (foo)

you should not think of the argument as being “the variable foo.” Instead, think of the
argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);
f (x);

does not actually force two 1000 by 1000 element matrices to exist unless the function f
modifies the value of its argument. Then Octave must create a copy to avoid changing the
value outside the scope of the function f, or attempting (and probably failing!) to modify
the value of a constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions®, recursive function calls are allowed. A recursive function is one
which calls itself, either directly or indirectly. For example, here is an inefficient? way to
compute the factorial of a given integer:

function retval = fact (n)
if (n > 0)
retval = n * fact (n-1);
else
retval = 1;
endif
endfunction

1 Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver 1sode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so 1sode should not be called either directly or indirectly from within the user-supplied
function that 1sode requires. Doing so will result in an error.

2 1t would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that
the value n is actually a positive integer.

Chapter 8: Expressions 141

This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous
call. Once the argument is no longer greater than zero, it does not call itself, and the
recursion ends.

The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

val = max_recursion_depth () [Built-in Function]
old_val = max_recursion_depth (new_val) [Built-in Function]
max_recursion_depth (new_val, "local") [Built-in Function]

Query or set the internal limit on the number of times a function may be called
recursively. If the limit is exceeded, an error message is printed and control returns
to the top level.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices. The
element-by-element operators and functions broadcast (see Section 19.2 [Broadcasting],
page 483).

xX+y Addition. If both operands are matrices, the number of rows and columns must
both agree, or they must be broadcastable to the same shape.

X .+y Element-by-element addition. This operator is equivalent to +.

X-y Subtraction. If both operands are matrices, the number of rows and columns
of both must agree, or they must be broadcastable to the same shape.

X -y Element-by-element subtraction. This operator is equivalent to -.

x*y Matrix multiplication. The number of columns of x must agree with the number
of rows of y, or they must be broadcastable to the same shape.

x Xy Element-by-element multiplication. If both operands are matrices, the number
of rows and columns must both agree, or they must be broadcastable to the
same shape.

x/y Right division. This is conceptually equivalent to the expression

(inverse (y’) * x’)’
but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x./y Element-by-element right division.

x\y Left division. This is conceptually equivalent to the expression

inverse (x) * y

but it is computed without forming the inverse of x.

142 GNU Octave

If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x \y Element-by-element left division. Each element of y is divided by each corre-
sponding element of x.

oy Power operator. If x and y are both scalars, this operator returns x raised to

the power y. If x is a scalar and y is a square matrix, the result is computed
using an eigenvalue expansion. If x is a square matrix, the result is computed
by repeated multiplication if y is an integer, and by an eigenvalue expansion if
v is not an integer. An error results if both x and y are matrices.

The implementation of this operator needs to be improved.

Ky Element-by-element power operator. If both operands are matrices, the number

of rows and columns must both agree, or they must be broadcastable to the
same shape. If several complex results are possible, the one with smallest non-
negative argument (angle) is taken. This rule may return a complex root even
when a real root is also possible. Use realpow, realsqrt, cbrt, or nthroot if
a real result is preferred.

-X Negation.
+X Unary plus. This operator has no effect on the operand.

be Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to
the expression

conj (x.7)

X. Transpose.

¢

Note that because Octave’s element-by-element operators begin with a ¢.’) there is a

possible ambiguity for statements like
1./m

because the period could be interpreted either as part of the constant or as part of the
operator. To resolve this conflict, Octave treats the expression as if you had typed

1) ./ m
and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually
prefers to break the input into tokens by preferring the longest possible match at any given
point, it is more useful in this case.

ctranspose (x) [Built-in Function]
Return the complex conjugate transpose of x. This function and x’ are equivalent.

See also: [transpose], page 144.

Chapter 8: Expressions 143

ldivide (x, y) [Built-in Function]
Return the element-by-element left division of x and y. This function and x .\ y are
equivalent.

See also: [rdivide], page 144, [mldivide], page 143, [times], page 144, [plus], page 143.

minus (x, y) [Built-in Function]
This function and x - y are equivalent.

See also: [plus|, page 143, [uminus], page 144.

mldivide (x, y) [Built-in Function]
Return the matrix left division of x and y. This function and x \ y are equivalent.

See also: [mrdivide], page 143, [ldivide], page 143, [rdivide], page 144.

mpower (X, y) [Built-in Function]
Return the matrix power operation of x raised to the y power. This function and
x 7 y are equivalent.

See also: [power|, page 143, [mtimes]|, page 143, [plus], page 143, [minus|, page 143.

mrdivide (x, y) [Built-in Function]
Return the matrix right division of x and y. This function and x / y are equivalent.

See also: [mldivide], page 143, [rdivide], page 144, [plus], page 143, [minus|, page 143.

mtimes (x, y) [Built-in Function]
mtimes (x1, x2, ...) [Built-in Function]
Return the matrix multiplication product of inputs. This function and x * y are
equivalent. If more arguments are given, the multiplication is applied cumulatively
from left to right:
oo ((x1 o * x2) % x3) * ...)

At least one argument is required.

See also: [times], page 144, [plus], page 143, [minus|, page 143, [rdivide], page 144,
[mrdivide], page 143, [mldivide], page 143, [mpower]|, page 143.

plus (x, y) [Built-in Function]
plus (x1, x2, ...) [Built-in Function]
This function and x + y are equivalent. If more arguments are given, the summation
is applied cumulatively from left to right:
oo ((x1 + x2) + x3) + ...)

At least one argument is required.

See also: [minus|, page 143, [uplus], page 144.

power (x, y) [Built-in Function]
Return the element-by-element operation of x raised to the y power. If several com-
plex results are possible, returns the one with smallest non-negative argument (angle).
Use realpow, realsqrt, cbrt, or nthroot if a real result is preferred.

This function and x .~ y are equivalent.

See also: [mpower|, page 143, [realpow|, page 430, [realsqrt], page 430, [cbrt],
page 430, [nthroot], page 430.

144 GNU Octave

rdivide (x, y) [Built-in Function]
Return the element-by-element right division of x and y. This function and x ./ y
are equivalent.

See also: [ldivide], page 143, [mrdivide], page 143, [times], page 144, [plus], page 143.

times (x, y) [Built-in Function]
times (x1, x2, ...) [Built-in Function]
Return the element-by-element multiplication product of inputs. This function and
X .* y are equivalent. If more arguments are given, the multiplication is applied
cumulatively from left to right:
oo ((x1 % x2) .% x3) % ...)

At least one argument is required.

See also: [mtimes], page 143, [rdivide], page 144.

transpose (x) [Built-in Function]
Return the transpose of x. This function and x.’ are equivalent.

See also: [ctranspose|, page 142.

uminus (x) [Built-in Function]
This function and - x are equivalent.

See also: [uplus], page 144, [minus], page 143.

uplus (x) [Built-in Function]
This function and + x are equivalent.

See also: [uminus|, page 144, [plus], page 143, [minus|, page 143.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.

All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0
if it is false. For matrix values, they all work on an element-by-element basis. Broadcasting
rules apply. See Section 19.2 [Broadcasting], page 483. For example:

(1, 2; 3, 4] == [1, 3; 2, 4]
= 1 0
0 1

According to broadcasting rules, if one operand is a scalar and the other is a matrix, the
scalar is compared to each element of the matrix in turn, and the result is the same size as
the matrix.

x<y True if x is less than y.

x <=y True if x is less than or equal to y.

X ==y True if x is equal to y.

x>=y True if x is greater than or equal to y.

x>y True if x is greater than y.

Chapter 8: Expressions 145

=y True if x is not equal to y.

For complex numbers, the following ordering is defined: z1 < z2 if and only if

abs (z1) < abs (z2)
[l (abs (z1) == abs (z2) && arg (z1) < arg (z2))

This is consistent with the ordering used by max, min and sort, but is not consistent
with MATLAB, which only compares the real parts.

String comparisons may also be performed with the strcmp function, not with the com-
parison operators listed above. See Chapter 5 [Strings|, page 67.

eq (x,y) [Built-in Function]
Return true if the two inputs are equal. This function is equivalent to x == y.
See also: [nel, page 145, [isequal], page 145, [le], page 145, [ge], page 145, [gt], page 145,
[ne|, page 145, [1t], page 145.
ge (x,5) [Built-in Function]
This function is equivalent to x >=y.
See also: [le], page 145, [eq], page 145, [gt], page 145, [ne], page 145, [lt], page 145.
gt (x,¥) [Built-in Function]
This function is equivalent to x > y.
See also: [le], page 145, [eq|, page 145, [ge], page 145, [ne], page 145, [It], page 145.
isequal (x1, x2,...) [Function File]
Return true if all of x1, x2, ... are equal.
See also: [isequaln], page 145.
isequaln (x1, x2, ...) [Function File]

Return true if all of xI, x2, ... are equal under the additional assumption that NaN
== NaN (no comparison of NaN placeholders in dataset).

See also: [isequal], page 145.
le (x,y) [Built-in Function]
This function is equivalent to x <=y.
See also: [eq], page 145, [ge], page 145, [gt], page 145, [ne], page 145, [lt], page 145.
1t (x, y) [Built-in Function]
This function is equivalent to x < y.
See also: [le], page 145, [eq], page 145, [ge], page 145, [gt], page 145, [ne], page 145.
ne (x,y) [Built-in Function]
Return true if the two inputs are not equal. This function is equivalent to x !'=y.

See also: [eq], page 145, [isequal], page 145, [le], page 145, [ge], page 145, [lt],
page 145.

146 GNU Octave

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to
control nesting. The truth of the boolean expression is computed by combining the truth
values of the corresponding elements of the component expressions. A value is considered
to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions
can be used. They can be used in if and while statements. However, a matrix value used
as the condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression
also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

booleanl & booleanZ2
Elements of the result are true if both corresponding elements of booleanl and
boolean2 are true.

booleanl | boolean2
Elements of the result are true if either of the corresponding elements of
booleanl or booleanZ2 is true.

! boolean

~ boolean
Each element of the result is true if the corresponding element of boolean is
false.

These operators work on an element-by-element basis. For example, the expression
(1, 0; 0, 11 & [1, 0; 2, 3]
returns a two by two identity matrix.

For the binary operators, broadcasting rules apply. See Section 19.2 [Broadcasting],
page 483. In particular, if one of the operands is a scalar and the other a matrix, the
operator is applied to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions booleanl and
boolean2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++
the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-
valued operands.

= and (x, y) [Built-in Function]
= and (x1, x2, ...) [Built-in Function]
Return the logical AND of x and y.
This function is equivalent to the operator syntax x & y. If more than two arguments
are given, the logical AND is applied cumulatively from left to right:

z
z

Chapter 8: Expressions 147

oo ((x1 & x2) & x3) & ...)

At least one argument is required.

See also: [or], page 147, [not], page 147, [xor], page 399.

z = not (x) [Built-in Function]
Return the logical NOT of x.

This function is equivalent to the operator syntax ! x.

See also: [and], page 146, [or], page 147, [xor], page 399.

z = or (x,y) [Built-in Function]
z = or (x1,x2,...) [Built-in Function]
Return the logical OR of x and y.
This function is equivalent to the operator syntax x | y. If more than two arguments
are given, the logical OR is applied cumulatively from left to right:

Cooo(x1 1 x2) | x3) | ...)

At least one argument is required.

See also: [and], page 146, [not], page 147, [xor], page 399.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-
tave’s element-by-element boolean operators are often sufficient for performing most logical
operations. However, it is sometimes desirable to stop evaluating a boolean expression as
soon as the overall truth value can be determined. Octave’s short-circuit boolean operators
work this way.

booleanl && booleanZ2
The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (booleani (:)). If it is false, the result of the overall
expression is 0. If it is true, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean1 (:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: there is one exception to the rule of evaluating all (booleani (:)),
which is when booleanl is the empty matrix. The truth value of an empty
matrix is always false so [] && true evaluates to false even though all
([1) is true.

booleanl || boolean2
The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1 (:)). If it is true, the result of the overall
expression is 1. If it is false, the expression boolean?2 is evaluated and converted
to a scalar using the equivalent of the operation all (booleani (:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: the truth value of an empty matrix is always false, see the previous
list item for details.

148 GNU Octave

The fact that both operands may not be evaluated before determining the overall truth
value of the expression can be important. For example, in the expression

a && b++
the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)
if (nargin > 2 && ischar (c))

instead of having to use two if statements to avoid attempting to evaluate an argument
that doesn’t exist. For example, without the short-circuit feature, it would be necessary to
write

function f (a, b, c)
if (nargin > 2)
if (ischar (c))

Writing
function £ (a, b, c)
if (nargin > 2 & ischar (c))

would result in an error if £ were called with one or two arguments because Octave would
be forced to try to evaluate both of the operands for the operator ‘&’.

MATLAB has special behavior that allows the operators ‘&” and ‘|’ to short-circuit when
used in the truth expression for if and while statements. Octave also behaves the same way
by default, though the use of the ‘&” and ‘|’ operators in this way is strongly discouraged.

Instead, you should use the ‘€&’ and ‘| |’ operators that always have short-circuit behavior.

Finally, the ternary operator (7:) is not supported in Octave. If short-circuiting is not
important, it can be replaced by the ifelse function.

merge (mask, tval, fval) [Built-in Function]

ifelse (mask, tval, fval) [Built-in Function]
Merge elements of true_val and false_val, depending on the value of mask. If mask is
a logical scalar, the other two arguments can be arbitrary values. Otherwise, mask
must be a logical array, and tval, fval should be arrays of matching class, or cell
arrays. In the scalar mask case, tval is returned if mask is true, otherwise fval is
returned.

In the array mask case, both tval and fval must be either scalars or arrays with
dimensions equal to mask. The result is constructed as follows:

result (mask) = tval(mask);
result (! mask) = fval(! mask);

mask can also be arbitrary numeric type, in which case it is first converted to logical.

See also: [logical|, page 60, [diff], page 400.

Chapter 8: Expressions 149

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable. For example, the
following expression assigns the value 1 to the variable z:

z =1

After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=’ sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would
store the value "this food is good" in the variable message:

thing = "food"
predicate = "good"
message = ["this " , thing , " is " , predicate]

(This also illustrates concatenation of strings.)

Most operators (addition, concatenation, and so on) have no effect except to compute
a value. If you ignore the value, you might as well not use the operator. An assignment
operator is different. It does produce a value, but even if you ignore the value, the assignment
still makes itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 123). It can also be an element of a matrix (see Section 8.1 [Index Expressions],
page 135) or a list of return values (see Section 8.2 [Calling Functions], page 139). These
are all called Ivalues, which means they can appear on the left-hand side of an assignment
operator. The right-hand operand may be any expression. It produces the new value which
the assignment stores in the specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a
variable is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a string value
later on:

I
[EY

octave:13> foo
foo =1
octave:13> foo
foo = bar

"barll

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced
by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) =5
sets all the elements in the second column of a to 5.

Assigning an empty matrix ‘[]’ works in most cases to allow you to delete rows or
columns of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 51. For example,
given a 4 by 5 matrix A, the assignment

A @,)=1
deletes the third row of A, and the assignment

150 GNU Octave

A (:, 1:2:5) =[]
deletes the first, third, and fifth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the
value 1. One consequence of this is that you can write multiple assignments together:

x=y=z=0
stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,
is stored into y, and then the value of y = z = 0, which is 0, is stored into x.
This is also true of assignments to lists of values, so the following is a valid expression
[a, b, c] = [u, s, v] = svd (a)
that is exactly equivalent to

[u , v] = svd (a)

, S
=u
s

0o o P

=v
In expressions like this, the number of values in each part of the expression need not
match. For example, the expression
la, b] = [u, s, v] = svd (a)
is equivalent to

[u, s, v] = svd (a)

a =
b=

n o n

The number of values on the left side of the expression can, however, not exceed the number
of values on the right side. For example, the following will produce an error.

[a, b, ¢, d] = [u, s, v] = svd (a);
- error: element number 4 undefined in return list

The symbol ™ may be used as a placeholder in the list of lvalues, indicating that the
corresponding return value should be ignored and not stored anywhere:

[, s, v] = svd (a);

This is cleaner and more memory efficient than using a dummy variable. The nargout
value for the right-hand side expression is not affected. If the assignment is used as an
expression, the return value is a comma-separated list with the ignored values dropped.

A very common programming pattern is to increment an existing variable with a given
value, like this

a=a+ 2;
This can be written in a clearer and more condensed form using the += operator
a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

exprl op= expr2

is evaluated as

Chapter 8: Expressions 151

exprl = (exprl) op (expr2)

where op can be either +, -, *, or /, as long as expr2 is a simple expression with no side
effects. If expr2 also contains an assignment operator, then this expression is evaluated as

temp = expr2
exprl = (exprl) op temp

where temp is a placeholder temporary value storing the computed result of evaluating
expr2. So, the expression

a *x= b+l
is evaluated as
a =ax*x (b+1)
and not
a=ax*xb+1

You can use an assignment anywhere an expression is called for. For example, it is valid
to write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends
to make programs hard to read. Except in a one-shot program, you should rewrite it to get
rid of such nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to
increment a variable is written as ‘++’. It may be used to increment a variable either before
or after taking its value.

For example, to pre-increment the variable x, you would write ++x. This would add one
to x and then return the new value of x as the result of the expression. It is exactly the
same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,
but returns the value that x had prior to incrementing it. For example, if x is equal to 2,
the result of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x + 1.

--x This expression decrements the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x - 1.

X++ This expression causes the variable x to be incremented. The value of the
expression is the old value of x.

x—= This expression causes the variable x to be decremented. The value of the
expression is the old value of x.

152 GNU Octave

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators ap-
pear close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the
expression a + b * ¢ means to multiply b and c, and then add a to the product (i.e., a + (b
* c)).

You can overrule the precedence of the operators by using parentheses. You can think
of the precedence rules as saying where the parentheses are assumed if you do not write
parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual
combination of operators, because other people who read the program may not remember
what the precedence is in this case. You might forget as well, and then you too could make
a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment operators, which group in the opposite order. Thus, the
expression a - b + ¢ groups as (a - b) + ¢, but the expression a =b = c groups asa = (b =

c).

The precedence of prefix unary operators is important when another operator follows
the operand. For example, -x~2 means -(x"2), because ‘-’ has lower precedence than

(e~

Here is a table of the operators in Octave, in order of decreasing precedence. Unless
noted, all operators group left to right.

function call and array indexing, cell array indexing, and structure element
indexing

(()7 C{}? [
postfix increment, and postfix decrement
gm0

These operators group right to left.

transpose and exponentiation
Y ¢ 9 LA c**a [I **7

unary plus, unary minus, prefix increment, prefix decrement, and logical "not"
) 0 ¢ P4 7 L~y L
+7 =T) e !

multiply and divide

4*7 (/7 L\’L \74 *74 /7
add, subtract

e

colon “

relational

)) ~
4<7 (<=7 [L>= 4>7 6!=7 (v

element-wise "and"
L&?

element-wise "or"
4 | b

Chapter 8: Expressions 153

logical "and"
4&&7
logical "oxr"
3 | | 7
assignment
L) 4+=7 [pp— £*=7 £/=7 C\=7 [Rapel é'*=7 é'/=7 L'\=7 L"~=7 4|=7 ¢&=7

These operators group right to left.

Chapter 9: Evaluation 155

9 Ewvaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by
asking Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed
and stored in a string, which is exactly what the eval function lets you do.

eval (try) [Built-in Function]

eval (try, catch) [Built-in Function]
Parse the string try and evaluate it as if it were an Octave program. If that fails,
evaluate the optional string catch. The string try is evaluated in the current context,
so any results remain available after eval returns.

The following example creates the variable A with the approximate value of 3.1416
in the current workspace.

eval ("A = acos(-1);");

If an error occurs during the evaluation of try then the catch string is evaluated, as
the following example shows:

eval (Cerror ("This is a bad example");’,
’printf ("This error occurred:\n%s\n", lasterr ());’);
- This error occurred:
This is a bad example

Programming Note: if you are only using eval as an error-capturing mechanism,
rather than for the execution of arbitrary code strings, Consider using try/catch
blocks or unwind_protect /unwind_protect_cleanup blocks instead. These techniques
have higher performance and don’t introduce the security considerations that the
evaluation of arbitrary code does.

See also: [evalin], page 158.

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This
is useful when writing a function that needs to call user-supplied functions. The feval
function takes the name of the function to call as its first argument, and the remaining
arguments are given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

usage: newtroot (fname, x)

#
fname : a string naming a function f(x).
X : initial guess

delta = tol = sqrt (eps);

maxit = 200;

156 GNU Octave

fx = feval (fname, x);
for i = 1l:maxit
if (abs (fx) < tol)
result = x;
return;
else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
x = x - fx / deriv;
fx = fx_new;
endif
endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied functions and
should not be taken too seriously. In addition to using a more robust algorithm, any serious
code would check the number and type of all the arguments, ensure that the supplied func-
tion really was a function, etc. See Section 4.8 [Predicates for Numeric Objects|, page 62, for
a list of predicates for numeric objects, and see Section 7.3 [Status of Variables|, page 127,
for a description of the exist function.

feval (name, ...) [Built-in Function]
Evaluate the function named name. Any arguments after the first are passed as inputs
to the named function. For example,

feval ("acos", -1)
= 3.1416

calls the function acos with the argument ‘-1’.

The function feval can also be used with function handles of any sort (see
Section 11.11.1 [Function Handles|, page 199). Historically, feval was the only way
to call user-supplied functions in strings, but function handles are now preferred due
to the cleaner syntax they offer. For example,

f = Qexp;
feval (f, 1)
= 2.7183
f (1
= 2.7183

are equivalent ways to call the function referred to by f. If it cannot be predicted
beforehand whether f is a function handle, function name in a string, or inline function
then feval can be used instead.

A similar function run exists for calling user script files, that are not necessarily on the
user path

Chapter 9: Evaluation 157

run script [Command]
run ("script") [Function File]
Run script in the current workspace.

Scripts which reside in directories specified in Octave’s load path, and which end with
the extension ‘".m"’, can be run simply by typing their name. For scripts not located
on the load path, use run.

The file name script can be a bare, fully qualified, or relative filename and with or
without a file extension. If no extension is specified, Octave will first search for a
script with the ‘".m"’ extension before falling back to the script name without an
extension.

Implementation Note: If script includes a path component, then run first changes the
working directory to the directory where script is found. Next, the script is executed.
Finally, run returns to the original working directory unless script has specifically
changed directories.

See also: [path], page 190, [addpath], page 189, [source], page 199.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list
of function parameters and a couple of predefined variables such as nargin. Expressions
inside the function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in
your own context. This allows you to use a pass-by-name style of function, which is similar
to using a pointer in programming languages such as C.

Consider how you might write save and load as m-files. For example:

function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y
endfunction

With evalin, you could write save as follows:

function save (file, namel, name2)
f = open_save_file (file);
save_var (f, namel, evalin ("caller", namel));
save_var (f, name2, evalin ("caller", name2));
endfunction

Here, ‘caller’ is the create_data function and namel is the string "x", which evaluates
simply as the value of x.

You later want to load the values back from mydata in a different context:

function process_data
load mydata
. do work ...
endfunction

158 GNU Octave

With assignin, you could write load as follows:

function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);
endfunction

Here, ‘caller’ is the process_data function.

You can set and use variables at the command prompt using the context ‘base’ rather
than ‘caller’.

These functions are rarely used in practice. One example is the fail (‘code’,
‘pattern’) function which evaluates ‘code’ in the caller’s context and checks that the
error message it produces matches the given pattern. Other examples such as save and
load are written in C++ where all Octave variables are in the ‘caller’ context and evalin
is not needed.

evalin (context, try) [Built-in Function]

evalin (context, try, catch) [Built-in Function]
Like eval, except that the expressions are evaluated in the context context, which
may be either "caller" or "base".

See also: [eval], page 155, [assignin], page 158.

assignin (context, varname, value) [Built-in Function]
Assign value to varname in context context, which may be either "base" or "caller".

See also: [evalin], page 158.

Chapter 10: Statements 159

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while,
to distinguish them from simple expressions. Many control statements contain other state-
ments; for example, the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks the end of the
control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a
more specific end keyword is expected, but using the more specific keywords is preferred
because if you use them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.

The list of statements contained between keywords like if or while and the correspond-
ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an
if statement. In its simplest form, it looks like this:

if (condition)
then-body
endif

condition is an expression that controls what the rest of the statement will do. The then-
body is executed only if condition is true.

The condition in an if statement is considered true if its value is nonzero, and false if
its value is zero. If the value of the conditional expression in an if statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are nonzero.

The second form of an if statement looks like this:

if (condition)
then-body
else
else-body
endif

If condition is true, then-body is executed; otherwise, else-body is executed.
Here is an example:

if (rem (x, 2) == 0)
printf ("x is even\n");
else
printf ("x is odd\n");
endif

160 GNU Octave

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is
divisible by 2), then the first printf statement is evaluated, otherwise the second printf
statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be
combined in a single statement. It looks like this:

if (condition)
then-body

elseif (condition)
elseif-body

else
else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is
found to be true, its corresponding body is executed. If none of the conditions are true and
the else clause is present, its body is executed. Only one else clause may appear, and it
must be the last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible
by 2), then the first printf statement is executed. If it is false, then the second condition
is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf
statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If
it is, the space between the else and if will tell Octave to treat this as a new if statement
within another if statement’s else clause. For example, if you write

if (c1)
body-1
else if (c2)
body-2
endif

Octave will expect additional input to complete the first if statement. If you are using
Octave interactively, it will continue to prompt you for additional input. If Octave is reading
this input from a file, it may complain about missing or mismatched end statements, or, if
you have not used the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,

Chapter 10: Statements 161

if (c1)
body-1
else
if (c2)
body-2
endif
using the indentation to show how Octave groups the statements. See Chapter 11 [Functions

and Scripts], page 171.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)
do_something () ;
elseif (X == 2)
do_something_else ();
else
do_something_completely_different ();
endif
This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above

example becomes

switch (X)
case 1
do_something ();
case 2
do_something_else ();
otherwise
do_something_completely_different ();
endswitch

This code makes the repetitive structure of the problem more explicit, making the code
easier to read, and hence maintain. Also, if the variable X should change its name, only one
line would need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch (expression)
case label
command_list
case label
command_1list

otherwise
command_1list
endswitch

162 GNU Octave

where label can be any expression. However, duplicate label values are not detected, and
only the command_list corresponding to the first match will be executed. For the switch
statement to be meaningful at least one case label command_list clause must be present,
while the otherwise command_list clause is optional.

If label is a cell array the corresponding command_list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable
is either 6 or 7’.

A=1T7;
switch (A)
case { 6, 7 }
printf ("variable is either 6 or 7\n");
otherwise
printf ("variable is neither 6 nor 7\n");
endswitch

As with all other specific end keywords, endswitch may be replaced by end, but you
can get better diagnostics if you use the specific forms.

One advantage of using the switch statement compared to using if statements is that
the labels can be strings. If an if statement is used it is not possible to write

if (X == "a string") # This is NOT valid
since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement,
and it is possible to write programs that look like this
switch (X)
case "a string"
do_something

enaé&itch
10.2.1 Notes for the C Programmer

The switch statement is also available in the widely used C programming language. There
are, however, some differences between the statement in Octave and C

e Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement
of the C language.

e The command_list elements are not optional. Making the list optional would have
meant requiring a separator between the label and the command list. Otherwise,
things like

switch (foo)
case (1) -2

would produce surprising results, as would
switch (foo)
case (1)
case (2)
doit ();

Chapter 10: Statements 163

particularly for C programmers. If doit () should be executed if foo is either 1 or 2,
the above code should be written with a cell array like this

switch (foo)
case {1, 2 }
doit ();

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed
two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes
a statement as long as a condition is true. As with the condition in an if statement, the
condition in a while statement is considered true if its value is nonzero, and false if its
value is zero. If the value of the conditional expression in a while statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are nonzero.

Octave’s while statement looks like this:

while (condition)
body
endwhile

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes
the statement body. After body has been executed, condition is tested again, and if it is
still true, body is executed again. This process repeats until condition is no longer true. If
condition is initially false, the body of the loop is never executed.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);

i= 3;

while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether
i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th
element of £ib is set to the sum of the previous two values in the sequence. Then the i++
increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

164 GNU Octave

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly ex-
ecutes a statement until a condition becomes true, and the test of the condition is at the
end of the loop, so the body of the loop is always executed at least once. As with the
condition in an if statement, the condition in a do-until statement is considered true if
its value is nonzero, and false if its value is zero. If the value of the conditional expression
in a do—until statement is a vector or a matrix, it is considered true only if it is non-empty
and all of the elements are nonzero.

Octave’s do—until statement looks like this:

do
body
until (condition)

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

ones (1, 10);

fib (i) = fib (i-1) + fib (i-2);
until (i == 10)

A newline is not required between the do keyword and the body; but using one makes
the program clearer unless the body is very simple.

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for var = expression
body
endfor

where body stands for any statement or list of statements, expression is any valid expression,
and var may take several forms. Usually it is a simple variable name or an indexed variable.
If the value of expression is a structure, var may also be a vector with two elements. See
Section 10.5.1 [Looping Over Structure Elements|, page 165, below.

The assignment expression in the for statement works a bit differently than Octave’s
normal assignment statement. Instead of assigning the complete result of the expression, it
assigns each column of the expression to var in turn. If expression is a range, a row vector,
or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten
elements of the Fibonacci sequence, this time using the for statement:

Chapter 10: Statements 165

fib = ones (1, 10);
for i = 3:10

fib (i) = fib (i-1) + fib (i-2);
endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3
to 10 inclusive. Then the variable i is assigned the first element of the range and the body
of the loop is executed once. When the end of the loop body is reached, the next value in
the range is assigned to the variable i, and the loop body is executed again. This process
continues until there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for
statement. For example consider

disp ("Loop over a matrix")
for i = [1,3;2,4]
i
endfor
disp ("Loop over a cell array")
for i = {1,"two";"three",4}
i
endfor
In this case the variable i takes on the value of the columns of the matrix or cell matrix.
So the first loop iterates twice, producing two column vectors [1;2], followed by [3;4],
and likewise for the loop over the cell array. This can be extended to loops over multi-
dimensional arrays. For example:

a = [1,3;2,4]; c = cat (3, a, 2%*a);
for i = ¢

i
endfor

In the above case, the multi-dimensional matrix c is reshaped to a two-dimensional matrix as
reshape (c, rows (c), prod (size (c)(2:end))) and then the same behavior as a loop
over a two dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has
both statements because often a for loop is both less work to type and more natural to
think of. Counting the number of iterations is very common in loops and it can be easier
to think of this counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements
A special form of the for statement allows you to loop over all the elements of a structure:

for [val, key] = expression
body
endfor

In this form of the for statement, the value of expression must be a structure. If it is, key
and val are set to the name of the element and the corresponding value in turn, until there
are no more elements. For example:

166 GNU Octave

x.a =1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
- key = a
- val =1
-+ key =D
- val =
_|
o 1 2
o 3 4
_{
- key = ¢
- val = string

The elements are not accessed in any particular order. If you need to cycle through
the list in a particular way, you will have to use the function fieldnames and sort the list
yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is
useful for cycling through the values of all the structure elements when the names of the
elements do not need to be known.

10.6 The break Statement

The break statement jumps out of the innermost while, do-until, or for loop that encloses
it. The break statement may only be used within the body of a loop. The following example
finds the smallest divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks
out of the loop. This means that Octave proceeds immediately to the statement following

Chapter 10: Statements 167

the loop and continues processing. (This is very different from the exit statement which
stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition
of a while statement could just as well be replaced with a break inside an if:

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside while, do—until, or for loops.
It skips over the rest of the loop body, causing the next cycle around the loop to begin
immediately. Contrast this with break, which jumps out of the loop altogether. Here is an
example:

print elements of a vector of random
integers that are even.

first, create a row vector of 10 random
integers with values between O and 100:

vec = round (rand (1, 10) * 100);
print what we’re interested in:

for x = vec
if (rem (x, 2) !'= 0)
continue;
endif
printf ("%d\n", x);
endfor

If one of the elements of vec is an odd number, this example skips the print statement
for that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

168 GNU Octave

for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);
endif
endfor

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modeled after the unwind-protect
form of Lisp.

The general form of an unwind_protect block looks like this:

unwind_protect
body
unwind_protect_cleanup
cleanup
end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are guaranteed to be executed regardless of how
control exits body.

This is useful to protect temporary changes to global variables from possible errors. For
example, the following code will always restore the original value of the global variable
frobnosticate even if an error occurs in the first part of the unwind_protect block.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;

unwind_protect_cleanup
frobnosticate = save_frobnosticate;
end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while evaluating the first part of the unwind_protect block because evaluation would stop
at the point of the error and the statement to restore the value would not be executed.

In addition to unwind_protect, Octave supports another form of exception handling, the
try block.

10.9 The try Statement

The original form of a try block looks like this:

try

body
catch

cleanup
end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are only executed if an error occurs in body.

Chapter 10: Statements 169

No warnings or error messages are printed while body is executing. If an error does
occur during the execution of body, cleanup can use the functions lasterr or lasterror
to access the text of the message that would have been printed, as well as its identifier. The
alternative form,

try
body
catch err
cleanup
end_try_catch

will automatically store the output of lasterror in the structure err. See Chapter 12
[Errors and Warnings|, page 205, for more information about the lasterr and lasterror
functions.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell
Octave to ignore the newline character in order to continue a statement from one line to
the next. Lines that end with the characters ... are joined with the following line before
they are divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name
+ longer_variable_name ...
- 42
form a single statement.

Any text between the continuation marker and the newline character is ignored. For
example, the statement

x = long_variable_name ... # comment one
+ longer_variable_name ...comment two
- 42 # last comment

is equivalent to the one shown above.

Inside double-quoted string constants, the character \ has to be used as continuation
marker. The \ must appear at the end of the line just before the newline character:

s = "This text starts in the first line \
and is continued in the second line."

Input that occurs inside parentheses can be continued to the next line without having to
use a continuation marker. For example, it is possible to write statements like

if (fine_dining destination == on_a_boat
|| fine_dining destination == on_a_train)
seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham) ;
endif

without having to add to the clutter with continuation markers.

Chapter 11: Functions and Scripts 171

11 Functions and Scripts

Complicated Octave programs can often be simplified by defining functions. Functions can
be defined directly on the command line during interactive Octave sessions, or in external
files, and can be called just like built-in functions.

11.1 Introduction to Function and Script Files

There are seven different things covered in this section.

1. Typing in a function at the command prompt.
Storing a group of commands in a file — called a script file.
Storing a function in a file—called a function file.
Subfunctions in function files.
Multiple functions in one script file.

Private functions.

NSOt W N

Nested functions.

Both function files and script files end with an extension of .m, for MATLAB compatibility.
If you want more than one independent functions in a file, it must be a script file (see
Section 11.10 [Script Files|, page 198), and to use these functions you must execute the
script file before you can use the functions that are in the script file.

11.2 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name
body
endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-
scores, not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");
endfunction
The printf statement (see Chapter 14 [Input and Output|, page 231) simply tells Octave

to print the string "\a". The special character ‘\a’ stands for the alert character (ASCII
7). See Chapter 5 [Strings|, page 67.

Once this function is defined, you can ask Octave to evaluate it by typing the name of
the function.

Normally, you will want to pass some information to the functions you define. The
syntax for passing parameters to a function in Octave is

172 GNU Octave

function name (arg-list)
body
endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list
of arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look
like this:

function wakeup (message)
printf ("\a%s\n", message);
endfunction

Calling this function using a statement like this
wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’,
followed by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you
define. Here is the syntax for writing a function that returns a single value:

function ret-var = name (arg-list)
body
endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by
the function. This variable must be defined before the end of the function body in order
for the function to return a value.

Variables used in the body of a function are local to the function. Variables named
in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],
page 124, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);
endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave
would have printed an error message like this:

error: value on right hand side of assignment is undefined

because the body of the if statement was never executed, and retval was never defined.
To prevent obscure errors like this, it is a good idea to always make sure that the return
variables will always have values, and to produce meaningful error messages when problems
are encountered. For example, avg could have been written like this:

Chapter 11: Functions and Scripts 173

function retval = avg (v)
retval = O;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message
that won'’t really help you track down the source of the error. To allow you to catch errors
like this, Octave provides each function with an automatic variable called nargin. Each
time a function is called, nargin is automatically initialized to the number of arguments
that have actually been passed to the function. For example, we might rewrite the avg
function like this:

function retval = avg (v)
retval = O;

if (nargin !'= 1)
usage ("avg (vector)");
endif

if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave
also does not automatically report an error if a function is called with too few arguments,
but any attempt to use a variable that has not been given a value will result in an error.
To avoid such problems and to provide useful messages, we check for both possibilities and
issue our own error message.

nargin () [Built-in Function]
nargin (fcn) [Built-in Function]
Report the number of input arguments to a function.

Called from within a function, return the number of arguments passed to the function.
At the top level, return the number of command line arguments passed to Octave.

If called with the optional argument fcn—a function name or handle— return the
declared number of arguments that the function can accept.

If the last argument to fcn is varargin the returned value is negative. For example,
the function union for sets is declared as

174 GNU Octave

function [y, ia, ib] = union (a, b, varargin)
and

nargin ("union")
= -3

Programming Note: nargin does not work on built-in functions.

See also: [nargout|, page 176, [narginchk], page 177, [varargin|, page 182, [inputname],
page 174.

inputname (n) [Function File]
Return the name of the n-th argument to the calling function.

If the argument is not a simple variable name, return an empty string. inputname
may only be used within a function body, not at the command line.

See also: [nargin|, page 173, [nthargout|, page 175.

val = silent_functions () [Built-in Function]
old_val = silent_functions (new_val) [Built-in Function]
silent_functions (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether internal output from a func-
tion is suppressed. If this option is disabled, Octave will display the results produced
by evaluating expressions within a function body that are not terminated with a
semicolon.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

11.3 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return
more than one value. The syntax for defining functions that return multiple values is

function [ret-list] = name (arg-list)
body
endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The
list of return values must have at least one element. If ret-list has only one element, this
form of the function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a
vector and the index of its first occurrence in the vector.

Chapter 11: Functions and Scripts 175

function [max, idx] = vmax (v)

idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = 1i;
endif
endfor
endfunction

In this particular case, the two values could have been returned as elements of a single
array, but that is not always possible or convenient. The values to be returned may not
have compatible dimensions, and it is often desirable to give the individual return values
distinct names.

It is possible to use the nthargout function to obtain only some of the return values or
several at once in a cell array. See Section 3.1.5 [Cell Array Objects], page 44.

nthargout (n, func, ...) [Function File]

nthargout (n, ntot, func, ...) [Function File]
Return the nth output argument of function given by the function handle or string
func. Any arguments after func are passed to func. The total number of arguments
to call func with can be passed in ntot; by default ntot is n. The input n can also be
a vector of indices of the output, in which case the output will be a cell array of the
requested output arguments.

The intended use nthargout is to avoid intermediate variables. For example, when
finding the indices of the maximum entry of a matrix, the following two compositions
of nthargout
m = magic (5);
cell2mat (nthargout ([1, 2], @ind2sub, size (m),
nthargout (2, Gmax, m(:))))
= b 3

are completely equivalent to the following lines:

m = magic (5);
[, idx] = max (M(:));
[i, j] = ind2sub (size (m), idx);

(i, j]

=5 3
It can also be helpful to have all output arguments in a single cell in the following
manner:

USV = nthargout ([1:3], @svd, hilb (5));

See also: [nargin|, page 173, [nargout], page 176, [varargin|, page 182, [varargout],
page 182, [isargout|, page 184.

In addition to setting nargin each time a function is called, Octave also automatically
initializes nargout to the number of values that are expected to be returned. This allows

176 GNU Octave

you to write functions that behave differently depending on the number of values that the
user of the function has requested. The implicit assignment to the built-in variable ans
does not figure in the count of output arguments, so the value of nargout may be zero.

The svd and lu functions are examples of built-in functions that behave differently
depending on the value of nargout.

It is possible to write functions that only set some return values. For example, calling
the function

function [x, y, z] = £ O
x =1;
z = 2;
endfunction
as
[a, b, c] = O
produces:

a=1

b = [1(0x0)

c =2

along with a warning.

nargout () [Built-in Function]
nargout (fcn) [Built-in Function]
Report the number of output arguments from a function.

Called from within a function, return the number of values the caller expects to
receive. At the top level, nargout with no argument is undefined and will produce
an error.

If called with the optional argument fcn—a function name or handle—return the
number of declared output values that the function can produce.

If the final output argument is varargout the returned value is negative.

For example,

f 0
will cause nargout to return 0 inside the function £ and
[s, t] = £ O

will cause nargout to return 2 inside the function f£.
In the second usage,
nargout (@histc) % or nargout ("histc")
will return 2, because histc has two outputs, whereas
nargout (@imread)
will return -2, because imread has two outputs and the second is varargout.

Programming Note. nargout does not work for built-in functions and returns -1 for
all anonymous functions.

Chapter 11: Functions and Scripts 177

See also: [nargin], page 173, [varargout|, page 182, [isargout], page 184, [nthargout],
page 175.

It is good practice at the head of a function to verify that it has been called correctly.
In Octave the following idiom is seen frequently

if (nargin < min_#_inputs || nargin > max_#_inputs)
print_usage ();
endif

which stops the function execution and prints a message about the correct way to call the
function whenever the number of inputs is wrong.

For compatibility with MATLAB, narginchk and nargoutchk are available which provide
similar error checking.

narginchk (minargs, maxargs) [Function File]
Check for correct number of arguments or generate an error message if the num-
ber of arguments in the calling function is outside the range minargs and maxargs.
Otherwise, do nothing,.

Both minargs and maxargs need to be scalar numeric values. Zero, Inf and negative
values are all allowed, and minargs and maxargs may be equal.

Note that this function evaluates nargin on the caller.
See also: [nargoutchk]|, page 177, [error|, page 205, [nargout]|, page 176, [nargin],
page 173.

nargoutchk (minargs, maxargs) [Function File]
msgstr = nargoutchk (minargs, maxargs, nargs) [Function File]
[]
[]

msgstr = nargoutchk (minargs, maxargs, nargs, "string") Function File
msgstruct = nargoutchk (minargs, maxargs, nargs, "struct") Function File
Check for correct number of output arguments.

On the first form, returns an error unless the number of arguments in its caller is
between the values of minargs and maxargs. It does nothing otherwise. Note that
this function evaluates the value of nargout on the caller so its value must have not
been tampered with.

Both minargs and maxargs need to be a numeric scalar. Zero, Inf and negative are
all valid, and they can have the same value.

For backward compatibility reasons, the other forms return an appropriate error mes-
sage string (or structure) if the number of outputs requested is invalid.

This is useful for checking to see that the number of output arguments supplied to a
function is within an acceptable range.

See also: [narginchk], page 177, [error|, page 205, [nargout|, page 176, [nargin],
page 173.

Besides the number of arguments, inputs can be checked for various properties.
validatestring is used for string arguments and validateattributes for numeric
arguments.

178 GNU Octave

validstr = validatestring (str, strarray) [Function File]

validstr = validatestring (str, strarray, funcname) [Function File]

validstr = validatestring (str, strarray, funcname, [Function File]
varname)

validstr = validatestring (..., position) [Function File]

validateattributes (
validateattributes (4, classes, attributes, arg_idx)
validateattributes (
validateattributes (

Verify that str is an element, or substring of an element, in strarray.

When str is a character string to be tested, and strarray is a cellstr of valid values,
then validstr will be the validated form of str where validation is defined as str being
a member or substring of validstr. This is useful for both verifying and expanding
short options, such as "r", to their longer forms, such as "red". If str is a substring
of validstr, and there are multiple matches, the shortest match will be returned if all
matches are substrings of each other. Otherwise, an error will be raised because the
expansion of str is ambiguous. All comparisons are case insensitive.

The additional inputs funcname, varname, and position are optional and will make
any generated validation error message more specific.

Examples:

validatestring ("r", {"red", "green", "blue"})
= "red"

validatestring ("b", {"red", "green", "blue", "black"})
= error: validatestring: multiple unique matches were found for ’b’:
blue, black

See also: [strcmp|, page 75, [strcmpi|, page 76, [validateattributes], page 178,
[inputParser|, page 180.

Function File
Function File
Function File
Function File

A, classes, attributes)

A, classes, attributes, func_name)
A, classes, attributes, func_name,

[Al L}

arg_name)

validateattributes (4, classes, attributes, func_name, [Function File]

arg_name, arg_1idx)
Check validity of input argument.
Confirms that the argument A is valid by belonging to one of classes, and holding
all of the attributes. If it does not, an error is thrown, with a message formatted
accordingly. The error message can be made further complete by the function name
fun_name, the argument name arg_name, and its position in the input arg_idx.

classes must be a cell array of strings (an empty cell array is allowed) with the name
of classes (remember that a class name is case sensitive). In addition to the class
name, the following categories names are also valid:

"float" Floating point value comprising classes "double" and "single".
"integer"
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.

"numeric"
Numeric value comprising either a floating point or integer value.

Chapter 11: Functions and Scripts 179

attributes must be a cell array with names of checks for A. Some of them require an
additional value to be supplied right after the name (see details for each below).

ne=" All values are less than or equal to the following value in attributes.

g All values are less than the following value in attributes.

n>=n All values are greater than or equal to the following value in attributes.
n>n All values are greater than the following value in attributes.

"4 A 2-dimensional matrix. Note that vectors and empty matrices have 2

dimensions, one of them being of length 1, or both length 0.

34" Has no more than 3 dimensions. A 2-dimensional matrix is a 3-D matrix
whose 3rd dimension is of length 1.

"binary" All values are either 1 or 0.
"column" Values are arranged in a single column.

"decreasing"
No value is NaN, and each is less than the preceding one.

"even" All values are even numbers.
"finite" All values are finite.

"increasing"
No value is NaN, and each is greater than the preceding one.

"integer"
All values are integer. This is different than using isinteger which only
checks its an integer type. This checks that each value in A is an integer
value, i.e., it has no decimal part.
"ncols" Has exactly as many columns as the next value in attributes.
"ndims" Has exactly as many dimensions as the next value in attributes.
"nondecreasing"
No value is NaN, and each is greater than or equal to the preceding one.
"nonempty"
It is not empty.
"nonincreasing"

No value is NalN, and each is less than or equal to the preceding one.
"nonnan" No value is a NaN.

"non-negative"
All values are non negative.

"nonsparse"
It is not a sparse matrix.

"nonzero"
No value is zero.

180 GNU Octave

"nrows" Has exactly as many rows as the next value in attributes.
"numel" Has exactly as many elements as the next value in attributes.
"odd" All values are odd numbers.

"positive"

All values are positive.
"real" It is a non-complex matrix.
"row" Values are arranged in a single row.
"scalar" It is a scalar.

"size" Its size has length equal to the values of the next in attributes. The next
value must is an array with the length for each dimension. To ignore the
check for a certain dimension, the value of NaN can be used.

"square" Is a square matrix.

"vector" Values are arranged in a single vector (column or vector).
See also: [isa], page 39, [validatestring], page 177, [inputParser], page 180.

If none of the preceding functions is sufficient there is also the class inputParser which
can perform extremely complex input checking for functions.

p = inputParser () [Function File]
Create object p of the inputParser class.

This class is designed to allow easy parsing of function arguments. The class supports
four types of arguments:

mandatory (see addRequired);

optional (see addOptional);

W o=

named (see addParamValue);
4. switch (see addSwitch).

After defining the function API with these methods, the supplied arguments can be
parsed with the parse method and the parsing results accessed with the Results
aCCessor.

inputParser.Parameters [Accessor method]
Return list of parameter names already defined.

inputParser.Results [Accessor method]
Return structure with argument names as fieldnames and corresponding values.

inputParser.Unmatched [Accessor method|
Return structure similar to Results, but for unmatched parameters. See the
KeepUnmatched property.

inputParser.UsingDefaults [Accessor method]
Return cell array with the names of arguments that are using default values.

Chapter 11: Functions and Scripts 181

inputParser.CaseSensitive = boolean [Class property]
Set whether matching of argument names should be case sensitive. Defaults to false.

inputParser.FunctionName = name [Class property]
Set function name to be used in error messages; Defaults to empty string.

inputParser.KeepUnmatched = boolean [Class property]
Set whether an error should be given for non-defined arguments. Defaults to false. If
set to true, the extra arguments can be accessed through Unmatched after the parse
method. Note that since Switch and ParamValue arguments can be mixed, it is not
possible to know the unmatched type. If argument is found unmatched it is assumed
to be of the ParamValue type and it is expected to be followed by a value.

inputParser.StructExpand = boolean [Class property]
Set whether a structure can be passed to the function instead of parameter/value
pairs. Defaults to true. Not implemented yet.

The following example shows how to use this class:

function check (varargin)
p = inputParser ();
p.FunctionName = "check";
p-addRequired ("pack", @ischar);
p.addOptional ("path", pwd(), @ischar);

create object

set function name
mandatory argument
optional argument

H H HF =

create a function handle to anonymous functions for validators
val_mat = @(x) isvector (x) && all (x <= 1) && all (x >= 0);
p-addOptional ("mat", [0 0], val_mat);

create two arguments of type "ParamValue"

val_type = @(x) any (strcmp (x, {"linear", "quadratic"}));
p.addParamValue ("type", "linear", val_type);

val_verb = @(x) any (strcmp (x, {"low", "medium", "high"}));
p.addParamValue ("tolerance", "low", val_verb);

create a switch type of argument
p.addSwitch ("verbose");

p.parse (varargin{:}); # Run created parser on inputs

the rest of the function can access inputs by using p.Results.
for example, get the tolerance input with p.Results.tolerance
endfunction

check ("mech"); # valid, use defaults for other arguments
check Q; # error, one argument is mandatory
check (1); # error, since ! ischar

check ("mech", "7/dev"); # valid, use defaults for other arguments

182 GNU Octave

check ("mech", "“/dev", [0 1 0 0], "type", "linear"); # valid

following is also valid. Note how the Switch argument type can
be mixed into or before the ParamValue argument type (but it

must still appear after any Optional argument) .

check ("mech", "“/dev", [0 1 0 0], "verbose", "tolerance", "high");

following returns an error since not all optional arguments,
‘path’ and ‘mat’, were given before the named argument ‘type’.
check ("mech", "7/dev", "type", "linear");
Note 1: A function can have any mixture of the four API types but they must appear
in a specific order. Required arguments must be first and can be followed by any
Optional arguments. Only the ParamValue and Switch arguments may be mixed
together and they must appear at the end.
Note 2: If both Optional and ParamValue arguments are mixed in a function API
then once a string Optional argument fails to validate it will be considered the end
of the Optional arguments. The remaining arguments will be compared against any
ParamValue or Switch arguments.

See also: [nargin], page 173, [validateattributes], page 178, [validatestring], page 177,
[varargin|, page 182.

11.4 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As
an example think of a function that returns the smallest of all its input arguments. For
example:

a = smallest (1, 2, 3);

b = smallest (1, 2, 3, 4);

In this example both a and b would be 1. One way to write the smallest function is

function val = smallest (argl, arg2, arg3, arg4, argb)
body
endfunction

and then use the value of nargin to determine which of the input arguments should be
considered. The problem with this approach is that it can only handle a limited number of
input arguments.

If the special parameter name varargin appears at the end of a function parameter list
it indicates that the function takes a variable number of input arguments. Using varargin
the function looks like this

function val = smallest (varargin)
body
endfunction
In the function body the input arguments can be accessed through the variable varargin.
This variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays],
page 112, for details on working with cell arrays. The smallest function can now be defined
like this

Chapter 11: Functions and Scripts 183

function val = smallest (varargin)
val = min ([varargin{:}]1);
endfunction

This implementation handles any number of input arguments, but it’s also a very simple
solution to the problem.

A slightly more complex example of varargin is a function print_arguments that prints
all input arguments. Such a function can be defined like this

function print_arguments (varargin)
for i = 1:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{i});
endfor
endfunction

This function produces output like this

print_arguments (1, "two", 3);
- Input argument 1: 1
- Input argument 2: two
- Input argument 3: 3

[reg, prop] = parseparams (params) [Function File]
[reg, varl, ...] = parseparams (params, namel, defaultl, [Function File]

)

Return in reg the cell elements of param up to the first string element and in prop
all remaining elements beginning with the first string element. For example:

[reg, prop] = parseparams ({1, 2, "linewidth", 103})

reg =
{
[1,1] = 1
[1,2] = 2
}
prop =
{
[1,1] = linewidth
[1,2] = 10
}

The parseparams function may be used to separate regular numeric arguments from
additional arguments given as property/value pairs of the varargin cell array.

In the second form of the call, available options are specified directly with their
default values given as name-value pairs. If params do not form name-value pairs, or
if an option occurs that does not match any of the available options, an error occurs.
When called from an m-file function, the error is prefixed with the name of the caller
function. The matching of options is case-insensitive.

See also: [varargin|, page 182, [inputParser]|, page 180.

184 GNU Octave

11.5 Ignoring Arguments

In the formal argument list, it is possible to use the dummy placeholder ~ instead of a name.
This indicates that the corresponding argument value should be ignored and not stored to
any variable.

function val = pick2nd (7, arg2)
val = arg?2;
endfunction
The value of nargin is not affected by using this declaration.

Return arguments can also be ignored using the same syntax. Functions may take
advantage of ignored outputs to reduce the number of calculations performed. To do so,
use the isargout function to query whether the output argument is wanted. For example:

function [outl, out2] = long_function (x, y, z)
if (isargout (1))
Long calculation

outl = result;
endif

endfunction

isargout (k) [Built-in Function]
Within a function, return a logical value indicating whether the argument k will be
assigned to a variable on output.

If the result is false, the argument has been ignored during the function call through
the use of the tilde (7) special output argument. Functions can use isargout to avoid
performing unnecessary calculations for outputs which are unwanted.

If k is outside the range 1:max (nargout), the function returns false. k can also be
an array, in which case the function works element-by-element and a logical array is
returned. At the top level, isargout returns an error.

See also: [nargout], page 176, [varargout], page 182, [nthargout], page 175.

11.6 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a
syntax that’s similar to the one used with the special varargin parameter name. To let a
function return a variable number of output arguments the special output parameter name
varargout is used. As with varargin, varargout is a cell array that will contain the
requested output arguments.

As an example the following function sets the first output argument to 1, the second to
2, and so on.

function varargout = one_to_n ()
for i = l:nargout
varargout{i} = i;
endfor
endfunction

Chapter 11: Functions and Scripts 185

When called this function returns values like this

[a, b, c] = one_to_n ()
= a= 1
= b= 2
= c= 3

If varargin (varargout) does not appear as the last element of the input (output)
parameter list, then it is not special, and is handled the same as any other parameter name.

[r1, r2, ..., rn] = deal (a) [Function File]

[r1, r2, ..., rn] = deal (al, a2, ..., an) [Function File]
Copy the input parameters into the corresponding output parameters. If only one
input parameter is supplied, its value is copied to each of the outputs.

For example,
a, b, c]

deal (x, y, 2z);

is equivalent to

a = x;
b =vy;
c = z;

and
[a, b, c] = deal (x);

is equivalent to
a=>b=c=x;
Programming Note: deal is often used with comma separated lists derived from cell

arrays or structures. This is unnecessary as the interpreter can perform the same
action without the overhead of a function call. For example:

c = {[1 2], "Three", 4};
[x, y, z1 = c{:}

=
X:

1 2
y = Three
z= 4

See also: [cell2struct], page 120, [struct2cell], page 111, [repmat|, page 413.

11.7 Returning from a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return
a value from a function. Instead, you must assign values to the list of return variables that

186 GNU Octave

are part of the function statement. The return statement simply makes it easier to exit
a function from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.

function retval = any_nonzero (v)
retval = 0;
for i = 1:length (v)
if (v (1) !'=0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction

Note that this function could not have been written using the break statement to exit

the loop once a nonzero value is found without adding extra logic to avoid printing the
message if the vector does contain a nonzero element.

return [Keyword]
When Octave encounters the keyword return inside a function or script, it returns
control to the caller immediately. At the top level, the return statement is ignored.
A return statement is assumed at the end of every function definition.

11.8 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list
it is possible to assign a default value to the argument like this

function name (argl = vall, ...)
body
endfunction

If no value is assigned to argl by the user, it will have the value vall.
As an example, the following function implements a variant of the classic “Hello, World”
program.
function hello (who = "World")
printf ("Hello, %s'\n", who);
endfunction
When called without an input argument the function prints the following
hello ();
- Hello, World!
and when it’s called with an input argument it prints the following
hello ("Beautiful World of Free Software");
- Hello, Beautiful World of Free Software!

Sometimes it is useful to explicitly tell Octave to use the default value of an input
argument. This can be done writing a ‘:’ as the value of the input argument when calling
the function.

Chapter 11: Functions and Scripts 187

hello (:);
- Hello, World!

11.9 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them.
You simply need to put the function definitions in a place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks for variables or
functions that are already compiled and currently listed in its symbol table. If it fails to
find a definition there, it searches a list of directories (the path) for files ending in ‘.m’ that
have the same base name as the undefined identifier.! Once Octave finds a file with a name
that matches, the contents of the file are read. If it defines a single function, it is compiled
and executed. See Section 11.10 [Script Files|, page 198, for more information about how
you can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it
read and the time stamp on the file. If the time stamp on the file changes, Octave may reload
the file. When Octave is running interactively, time stamp checking normally happens at
most once each time Octave prints the prompt. Searching for new function definitions also
occurs if the current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your
Octave session.

To avoid degrading performance unnecessarily by checking the time stamps on func-
tions that are not likely to change, Octave assumes that function files in the directory tree
‘octave-home /share/octave/version/m’ will not change, so it doesn’t have to check their
time stamps every time the functions defined in those files are used. This is normally a very
good assumption and provides a significant improvement in performance for the function
files that are distributed with Octave.

If you know that your own function files will not change while you are running Octave,
you can improve performance by calling ignore_function_time_stamp ("all"), so that
Octave will ignore the time stamps for all function files. Passing "system" to this function
resets the default behavior.

edit name [Command]|
edit field value [Command]
value = edit get field [Command]

Edit the named function, or change editor settings.

If edit is called with the name of a file or function as its argument it will be opened
in the text editor defined by EDITOR.

e If the function name is available in a file on your path and that file is modifiable,
then it will be edited in place. If it is a system function, then it will first be

! The ‘.m’ suffix was chosen for compatibility with MATLAB.

188

GNU Octave

copied to the directory HOME (see below) and then edited. If no file is found, then
the m-file variant, ending with ".m", will be considered. If still no file is found,
then variants with a leading "@" and then with both a leading "@" and trailing
".m" will be considered.

e If name is the name of a function defined in the interpreter but not in an m-file,
then an m-file will be created in HOME to contain that function along with its
current definition.

e If name.cc is specified, then it will search for name.cc in the path and try to
modify it, otherwise it will create a new ‘.cc’ file in the current directory. If
name happens to be an m-file or interpreter defined function, then the text of
that function will be inserted into the .cc file as a comment.

o If ‘name.ext’ is on your path then it will be edited, otherwise the editor will be
started with ‘name.ext’ in the current directory as the filename. If ‘name.ext’
is not modifiable, it will be copied to HOME before editing.

Warning: You may need to clear name before the new definition is available. If
you are editing a .cc file, you will need to execute mkoctfile ‘name.cc’ before
the definition will be available.

If edit is called with field and value variables, the value of the control field field will
be set to value. If an output argument is requested and the first input argument is
get then edit will return the value of the control field field. If the control field does
not exist, edit will return a structure containing all fields and values. Thus, edit get
all returns a complete control structure. The following control fields are used:

‘home’ This is the location of user local m-files. Be sure it is in your path. The
default is ‘" /octave’.

‘author’ This is the name to put after the "## Author:" field of new functions.
By default it guesses from the gecos field of the password database.

‘email’ This is the e-mail address to list after the name in the author field. By
default it guesses <$LOGNAME@$HOSTNAME>, and if $HOSTNAME is not de-
fined it uses uname -n. You probably want to override this. Be sure to
use the format <user@host>.

‘license’
‘gpl’ GNU General Public License (default).
‘bsd’ BSD-style license without advertising clause.
‘pd’ Public domain.
‘“"text"’ Your own default copyright and license.
Unless you specify ‘pd’, edit will prepend the copyright statement with
"Copyright (C) yyyy Function Author".
‘mode’ This value determines whether the editor should be started in async mode

(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to "sync" to start the editor
in sync mode. The default is "async" (see [system], page 756).

Chapter 11: Functions and Scripts 189

‘editinplace’
Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is false.

mfilename () [Built-in Function]
mfilename ("fullpath") [Built-in Function]
mfilename ("fullpathext") [Built-in Function]

Return the name of the currently executing file.
When called from outside an m-file return the empty string. Given the argument

"fullpath", include the directory part of the file name, but not the extension. Given
the argument "fullpathext", include the directory part of the file name and the

extension.
val = ignore_function_time_stamp () [Built-in Function]
old_val = ignore_function_time_stamp (new_val) [Built-in Function]

Query or set the internal variable that controls whether Octave checks the time stamp
on files each time it looks up functions defined in function files. If the internal variable
is set to "system", Octave will not automatically recompile function files in subdi-
rectories of ‘octave-home/lib/version’ if they have changed since they were last
compiled, but will recompile other function files in the search path if they change. If
set to "all", Octave will not recompile any function files unless their definitions are
removed with clear. If set to "none", Octave will always check time stamps on files
to determine whether functions defined in function files need to recompiled.

11.9.1 Manipulating the Load Path

When a function is called, Octave searches a list of directories for a file that contains the
function declaration. This list of directories is known as the load path. By default the
load path contains a list of directories distributed with Octave plus the current working
directory. To see your current load path call the path function without any input or output
arguments.

It is possible to add or remove directories to or from the load path using addpath and
rmpath. As an example, the following code adds ‘~/Octave’ to the load path.

addpath (""/Octave")

After this the directory ‘~/0ctave’ will be searched for functions.

addpath (diri, ...) [Built-in Function]

addpath (diri, ..., option) [Built-in Function]
Add named directories to the function search path. If option is "-begin" or 0 (the
default), prepend the directory name to the current path. If option is "-end" or 1,
append the directory name to the current path. Directories added to the path must
exist.
In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

addpath ("dirl:/dir2:~/dir3")

See also: [path], page 190, [rmpath]|, page 190, [genpath], page 190, [pathdef],
page 190, [savepath], page 190, [pathsep], page 191.

190 GNU Octave

genpath (dir) [Built-in Function]

genpath (dir, skip, ...) [Built-in Function]
Return a path constructed from dir and all its subdirectories. If additional string
parameters are given, the resulting path will exclude directories with those names.

rmpath (diri, ...) [Built-in Function]
Remove dirl, ... from the current function search path.

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

rmpath ("dirl:/dir2:7/dir3")

See also: [path], page 190, [addpath]|, page 189, [genpath], page 190, [pathdef],
page 190, [savepath], page 190, [pathsep|, page 191.

savepath () [Function File]
savepath (file) [Function File]
status = savepath (...) [Function File]

Save the unique portion of the current function search path that is not set during
Octave’s initialization process to file.

If file is omitted, Octave looks in the current directory for a project-specific
‘.octaverc’ file in which to save the path information. If no such file is present then
the user’s configuration file ‘~/.octaverc’ is used.

If successful, savepath returns 0.

The savepath function makes it simple to customize a user’s configuration file to
restore the working paths necessary for a particular instance of Octave. Assuming no
filename is specified, Octave will automatically restore the saved directory paths from
the appropriate ‘.octaverc’ file when starting up. If a filename has been specified
then the paths may be restored manually by calling source file.

See also: [path], page 190, [addpath]|, page 189, [rmpath], page 190, [genpath],
page 190, [pathdef], page 190.

path (...) [Built-in Function]
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy
to read format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with
pathsep. Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: [addpath], page 189, [rmpath], page 190, [genpath], page 190, [pathdef],
page 190, [savepath], page 190, [pathsep], page 191.

val = pathdef () [Function File]
Return the default path for Octave.

The path information is extracted from one of four sources. The possible sources, in
order of preference, are:

Chapter 11: Functions and Scripts 191

1. ‘.octaverc’

2. ‘7/.octaverc’

3. ‘<OCTAVE_HOME>/.../<version>/m/startup/octaverc’
4

. Octave’s path prior to changes by any octaverc file.

See also: [path], page 190, [addpath], page 189, [rmpath], page 190, [genpath],
page 190, [savepath], page 190.

val = pathsep () [Built-in Function]
old_val = pathsep (new_val) [Built-in Function]
Query or set the character used to separate directories in a path.

See also: [filesep|, page 748.

rehash () [Built-in Function]
Reinitialize Octave’s load path directory cache.

file_in_loadpath (file) [Built-in Function]

file_in_loadpath (file, "all") [Built-in Function]
Return the absolute name of file if it can be found in the list of directories specified
by path. If no file is found, return an empty character string.

If the first argument is a cell array of strings, search each directory of the loadpath
for element of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file_in_path], page 747, [dir_in_loadpath], page 191, [path], page 190.

restoredefaultpath (...) [Built-in Function]
Restore Octave’s path to its initial state at startup.

See also: [path], page 190, [addpath], page 189, [rmpath]|, page 190, [genpath],
page 190, [pathdef], page 190, [savepath], page 190, [pathsep], page 191.

command_line_path (...) [Built-in Function]
Return the command line path variable.

See also: [path], page 190, [addpath], page 189, [rmpath]|, page 190, [genpath],
page 190, [pathdef], page 190, [savepath], page 190, [pathsep], page 191.

dir_in_loadpath (dir) [Built-in Function]

dir_in_loadpath (dir, "all") [Built-in Function]
Return the full name of the path element matching dir. The match is performed
at the end of each path element. For example, if dir is "foo/bar", it matches
the path element "/some/dir/foo/bar", but not "/some/dir/foo/bar/baz"
"/some/dir/allfoo/bar".

The second argument is optional. If it is supplied, return a cell array containing all
name matches rather than just the first.

See also: [file_in_path], page 747, [file_in_loadpath], page 191, [path], page 190.

192 GNU Octave

11.9.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary func-
tions are only visible to the other functions in the same function file. For example, a file
‘f.m’ containing

function £ ()
printf ("in f, calling g\n");
g O

endfunction

function g ()
printf ("in g, calling h\n");
h O

endfunction

function h ()
printf ("in h\n")

endfunction

defines a main function £ and two subfunctions. The subfunctions g and h may only be
called from the main function f or from the other subfunctions, but not from outside the
file ‘f.m’.

11.9.3 Private Functions

In many cases one function needs to access one or more helper functions. If the helper
function is limited to the scope of a single function, then subfunctions as discussed above
might be used. However, if a single helper function is used by more than one function,
then this is no longer possible. In this case the helper functions might be placed in a
subdirectory, called "private", of the directory in which the functions needing access to this
helper function are found.

As a simple example, consider a function funcil, that calls a helper function func2 to
do much of the work. For example:

function y = funcl (x)
y = func2 (x);
endfunction

Then if the path to funcl is <directory>/funcl.m, and if func2 is found in the directory
<directory>/private/func2.m, then func2 is only available for use of the functions, like
funcl, that are found in <directory>.

11.9.4 Nested Functions

Nested functions are similar to subfunctions in that only the main function is visible outside
the file. However, they also allow for child functions to access the local variables in their
parent function. This shared access mimics using a global variable to share information —
but a global variable which is not visible to the rest of Octave. As a programming strategy,
sharing data this way can create code which is difficult to maintain. It is recommended to
use subfunctions in place of nested functions when possible.

As a simple example, consider a parent function foo, that calls a nested child function
bar, with a shared variable x.

Chapter 11: Functions and Scripts 193

function y = foo ()

x = 10;
bar ();
y = x;

function bar ()
x = 20;
endfunction
endfunction

foo ()
= 20

Notice that there is no special syntax for sharing x. This can lead to problems with acci-
dental variable sharing between a parent function and its child. While normally variables
are inherited, child function parameters and return values are local to the child function.

Now consider the function foobar that uses variables x and y. foobar calls a nested
function foo which takes x as a parameter and returns y. foo then calls bat which does
some computation.

function z = foobar ()

x = 0;
y =0;
z = foo (5);
Z += X +y;

function y = foo (x)
y = x + bat O;

function z = bat ()
Z = X;
endfunction
endfunction
endfunction

foobar ()
= 10

It is important to note that the x and y in foobar remain zero, as in foo they are a return
value and parameter respectively. The x in bat refers to the x in foo.

Variable inheritance leads to a problem for eval and scripts. If a new variable is created
in a parent function, it is not clear what should happen in nested child functions. For
example, consider a parent function foo with a nested child function bar:

194 GNU Octave

function y = foo (to_eval)
bar ;
eval (to_eval);

function bar ()
eval ("x = 100;");
eval ("y = x;");
endfunction
endfunction

foo ("x = 5;")
= error: can not add variable "x" to a static workspace

foo ("y = 10;")
= 10

foo (u ||)
= 100
The parent function foo is unable to create a new variable x, but the child function bar
was successful. Furthermore, even in an eval statement y in bar is the same y as in its
parent function foo. The use of eval in conjunction with nested functions is best avoided.

As with subfunctions, only the first nested function in a file may be called from the
outside. Inside a function the rules are more complicated. In general a nested function may
call:

0. Globally visible functions

1. Any function that the nested function’s parent can call
2. Sibling functions (functions that have the same parents)
3. Direct children

As a complex example consider a parent function ex_top with two child functions, ex_a
and ex_b. In addition, ex_a has two more child functions, ex_aa and ex_ab. For example:

function ex_top ()
Can call: ex_top, ex_a, and ex_b
Can NOT call: ex_aa and ex_ab

function ex_a ()
Call call everything

function ex_aa ()
Can call everything
endfunction

function ex_ab ()
Can call everything
endfunction
endfunction

Chapter 11: Functions and Scripts 195

function ex_b ()
Can call: ex_top, ex_a, and ex_b
Can NOT call: ex_aa and ex_ab
endfunction
endfunction

11.9.5 Overloading and Autoloading

Functions can be overloaded to work with different input arguments. For example, the oper-
ator '+’ has been overloaded in Octave to work with single, double, uint8, int32, and many
other arguments. The preferred way to overload functions is through classes and object
oriented programming (see Section 34.4.1 [Function Overloading], page 715). Occasionally,
however, one needs to undo user overloading and call the default function associated with
a specific type. The builtin function exists for this purpose.

[...] = builtin (£, ...) [Built-in Function]
Call the base function f even if f is overloaded to another function for the given type
signature.

This is normally useful when doing object-oriented programming and there is a re-
quirement to call one of Octave’s base functions rather than the overloaded one of a
new class.

A trivial example which redefines the sin function to be the cos function shows how
builtin works.

sin (0)
= 0
function y = sin (x), y = cos (x); endfunction
sin (0)
=1
builtin ("sin", 0)
= 0

A single dynamically linked file might define several functions. However, as Octave
searches for functions based on the functions filename, Octave needs a manner in which to
find each of the functions in the dynamically linked file. On operating systems that support
symbolic links, it is possible to create a symbolic link to the original file for each of the
functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is undesirable as it increases
the amount of disk space used by Octave. Instead Octave supplies the autoload function,
that permits the user to define in which file a certain function will be found.

autoload_map = autoload () [Built-in Function]
autoload (function, file) [Built-in Function]
autoload (..., "remove") [Built-in Function]

Define function to autoload from file.

196

GNU Octave

The second argument, file, should be an absolute file name or a file name in the same
directory as the function or script from which the autoload command was run. file
should not depend on the Octave load path.

Normally, calls to autoload appear in PKG_ADD script files that are evaluated when
a directory is added to Octave’s load path. To avoid having to hardcode directory
names in file, if file is in the same directory as the PKG_ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above usage when bar.oct is
not in the same directory, or usages such as

autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior may be unpredictable.
With no arguments, return a structure containing the current autoload map.

If a third argument "remove" is given, the function is cleared and not loaded anymore
during the current Octave session.

See also: [PKG_ADD], page 792.

11.9.6 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is
typically used for dynamically linked functions in Oct-files or mex-files that contain some
initialization, and it is desirable that calling clear does not remove this initialization.

As an example,

function my_function ()
mlock ();

prevents my_function from being removed from memory after it is called, even if clear is
called. It is possible to determine if a function is locked into memory with the mislocked,
and to unlock a function with munlock, which the following illustrates.

my_function ();

mislocked ("my_function")
= ans =1

munlock ("my_function");
mislocked ("my_function")
= ans = 0

A common use of mlock is to prevent persistent variables from being removed from
memory, as the following example shows:

Chapter 11: Functions and Scripts 197

function count_calls ()
mlock ();
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

count_calls ();
- ’count_calls’ has been called 1 times

clear count_calls
count_calls ();
- ’count_calls’ has been called 2 times

mlock might equally be used to prevent changes to a function from having effect in

Octave, though a similar effect can be had with the ignore_function_time_stamp function.

mlock () [Built-in Function]
Lock the current function into memory so that it can’t be cleared.

See also: [munlock], page 197, [mislocked], page 197, [persistent], page 126.

munlock () [Built-in Function]

munlock (fcn) [Built-in Function]
Unlock the named function fen. If no function is named then unlock the current
function.

See also: [mlock], page 197, [mislocked], page 197, [persistent|, page 126.

mislocked () [Built-in Function]

mislocked (fcn) [Built-in Function]
Return true if the named function fecn is locked. If no function is named then return
true if the current function is locked.

See also: [mlock], page 197, [munlock], page 197, [persistent], page 126.
11.9.7 Function Precedence

Given the numerous different ways that Octave can define a function, it is possible and even
likely that multiple versions of a function, might be defined within a particular scope. The
precedence of which function will be used within a particular scope is given by

1. Subfunction A subfunction with the required function name in the given scope.

2. Private function A function defined within a private directory of the directory which
contains the current function.

3. Class constructor A function that constructs a user class as defined in chapter
Chapter 34 [Object Oriented Programming], page 705.

4. Class method An overloaded function of a class as in chapter Chapter 34 [Object
Oriented Programming], page 705.

5. Command-line Function A function that has been defined on the command-line.

6. Autoload function A function that is marked as autoloaded with See [autoload],
page 195.

198 GNU Octave

7. A Function on the Path A function that can be found on the users load-path. There can
also be Oct-file, mex-file or m-file versions of this function and the precedence between
these versions are in that order.

8. Built-in function A function that is a part of core Octave such as numel, size, etc.

11.10 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and
evaluated just as if you had typed each command at the Octave prompt, and provides a
convenient way to perform a sequence of commands that do not logically belong inside a
function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should
be evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file
are not local variables, but are in the same scope as the other variables that are visible on
the command line.

Even though a script file may not begin with the function keyword, it is possible to
define more than one function in a single script file and load (but not execute) all of them
at once. To do this, the first token in the file (ignoring comments and other white space)
must be something other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

Prevent Octave from thinking that this
is a function file:

1;
Define function one:

function one ()

To have Octave read and compile these functions into an internal form, you need to
make sure that the file is in Octave’s load path (accessible through the path function), then
simply type the base name of the file that contains the commands. (Octave uses the same
rules to search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the func-
tion and try to execute it, printing a message warning about any non-whitespace characters
that appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs
to evaluate it. This means that Octave will compile the following statements if they appear
in a script file, or are typed at the command line,

Chapter 11: Functions and Scripts 199

not a function file:

1

function foo ()
do_something Q) ;

endfunction

function do_something ()
do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function
foo. This is not an error because Octave does not need to resolve all symbols that are
referenced by a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will
always print ‘bar = 3’ whether it is typed directly on the command line, read from a script
file, or is part of a function body, even if there is a function or script file called ‘bar.m’ in
Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were
resolved as the function was being compiled. It would be virtually impossible to make
Octave clever enough to evaluate this code in a consistent fashion. The parser would have
to be able to perform the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved, and requiring that
would be too restrictive (the string might come from user input, or depend on things that
are not known until the function is evaluated).

Although Octave normally executes commands from script files that have the name
‘file.m’, you can use the function source to execute commands from any file.

source (file) [Built-in Function]
Parse and execute the contents of file.

This is equivalent to executing commands from a script file, but without requiring
the file to be named ‘file.m’.

See also: [run|, page 156.

11.11 Function Handles, Anonymous Functions, Inline
Functions

It can be very convenient store a function in a variable so that it can be passed to a different
function. For example, a function that performs numerical minimization needs access to
the function that should be minimized.

11.11.1 Function Handles
A function handle is a pointer to another function and is defined with the syntax
@function-name

For example,

200 GNU Octave

f = @sin;
creates a function handle called £ that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example:

f = Osin;
quad (f, 0, pi)
- 2

You may use feval to call a function using function handle, or simply write the name
of the function handle followed by an argument list. If there are no arguments, you must
use an empty argument list ‘()’. For example:

f = @sin;
feval (f, pi/4)
= 0.70711
f (pi/4)
= 0.70711

is_function_handle (x) [Built-in Function]
Return true if x is a function handle.
See also: [isa], page 39, [typeinfo], page 39, [class], page 39, [functions|, page 200.

s = functions (fcn_handle) [Built-in Function]
Return a structure containing information about the function handle fen_handle.

The structure s always contains these 3 fields:

function ~ The function name. For an anonymous function (no name) this will be
the actual function definition.

type Type of the function.

anonymous
The function is anonymous.

private The function is private.

overloaded
The function overloads an existing function.

simple The function is a built-in or m-file function.

subfunction
The function is a subfunction within an m-file.

file The m-file that will be called to perform the function. This field is empty
for anonymous and built-in functions.
In addition, some function types may return more information in additional fields.

Warning: functions is provided for debugging purposes only. It’s behavior may
change in the future and programs should not depend on a particular output.

Chapter 11: Functions and Scripts 201

func2str (fcn_handle) [Built-in Function]
Return a string containing the name of the function referenced by the function handle
fen_handle.

See also: [str2func], page 201, [functions], page 200.

str2func (fcn_name) [Built-in Function]

str2func (fcn_name, "global") [Built-in Function]
Return a function handle constructed from the string fecn_name. If the optional
"global" argument is passed, locally visible functions are ignored in the lookup.

See also: [func2str], page 201, [inline], page 202.

11.11.2 Anonymous Functions

Anonymous functions are defined using the syntax

@(argument-list) expression
Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or

for wrapping calls to other functions to adapt them for use by functions like quad. For
example,

f =0(x) x.72;
quad (f, 0, 10)
= 333.33

creates a simple unnamed function from the expression x.~2 and passes it to quad,

quad (@(x) sin (x), 0, pi)
= 2

wraps another function, and

a=1;

b = 2;

quad (@(x) betainc (x, a, b), 0, 0.4)
= 0.13867

adapts a function with several parameters to the form required by quad. In this example,
the values of a and b that are passed to betainc are inherited from the current environment.

Note that for performance reasons it is better to use handles to existing Octave functions,
rather than to define anonymous functions which wrap an existing function. The integration
of sin (%) is 5X faster if the code is written as

quad (@sin, 0, pi)

rather than using the anonymous function @(x) sin (x). There are many operators which
have functional equivalents that may be better choices than an anonymous function. Instead
of writing

f=0(x, y) x+y
this should be coded as
f = @plus
See Section 34.4.2 [Operator Overloading], page 715, for a list of operators which also
have a functional form.

202 GNU Octave

11.11.3 Inline Functions

An inline function is created from a string containing the function body using the inline
function. The following code defines the function f(x) = z? + 2.

f = inline ("x"2 + 2");
After this it is possible to evaluate f at any x by writing £ (x).

Caution: MATLAB has begun the process of deprecating inline functions. At some point
in the future support will be dropped and eventually Octave will follow MATLAB and also
remove inline functions. Use anonymous functions in all new code.

inline (str) [Built-in Function]
inline (str, argi, ...) [Built-in Function]
inline (str, n) [Built-in Function]

Create an inline function from the character string str.

If called with a single argument, the arguments of the generated function are extracted
from the function itself. The generated function arguments will then be in alphabetical
order. It should be noted that i, and j are ignored as arguments due to the ambiguity
between their use as a variable or their use as an inbuilt constant. All arguments
followed by a parenthesis are considered to be functions. If no arguments are found,
a function taking a single argument named x will be created.

If the second and subsequent arguments are character strings, they are the names of
the arguments of the function.

If the second argument is an integer n, the arguments are "x", "P1", ..., "PN".

Programming Note: The use of inline is discouraged and it may be removed from
a future version of Octave. The preferred way to create functions from strings is
through the use of anonymous functions (see Section 11.11.2 [Anonymous Functions],
page 201) or str2func.

See also: [argnames|, page 202, [formula], page 202, [vectorize|, page 482, [str2func],
page 201.

argnames (fun) [Built-in Function]
Return a cell array of character strings containing the names of the arguments of the
inline function fun.

See also: [inline], page 202, [formulal, page 202, [vectorize], page 482.

formula (fun) [Built-in Function]
Return a character string representing the inline function fun.

Note that char (fun) is equivalent to formula (fun).

See also: [char], page 71, [argnames], page 202, [inline|, page 202, [vectorize],
page 482.

vars = symvar (str) [Function File]
Identify the symbolic variable names in the string str.

Common constant names such as i, j, pi, Inf and Octave functions such as sin or
plot are ignored.

Chapter 11: Functions and Scripts 203

Any names identified are returned in a cell array of strings. The array is empty if no
variables were found.

Example:
symvar ("x"2 + y~2 == 4")
= {
[1,1] = x
[2,1] =y
}

11.12 Commands

Commands are a special class of functions that only accept string input arguments. A
command can be called as an ordinary function, but it can also be called without the
parentheses. For example,

my_command hello world
is equivalent to
my_command ("hello", "world")
The general form of a command call is
cmdname argl arg2
which translates directly to
cmdname ("argl", "arg2", ...)

Any regular function can be used as a command if it accepts string input arguments.
For example:

toupper lower_case_arg
= ans = LOWER_CASE_ARG
One difficulty of commands occurs when one of the string input arguments is stored in a
variable. Because Octave can’t tell the difference between a variable name and an ordinary
string, it is not possible to pass a variable as input to a command. In such a situation a
command must be called as a function. For example:

strvar = "hello world";
toupper strvar

= ans = STRVAR
toupper (strvar)

= ans = HELLO WORLD

11.13 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely
organized by topic, in subdirectories of ‘octave-home/lib/octave/version/m’, to make
it easier to find them.

The following is a list of all the function file subdirectories, and the types of functions
you will find there.

‘audio’ Functions for playing and recording sounds.

204 GNU Octave

‘deprecated’
Out-of-date functions which will eventually be removed from Octave.

‘elfun’ Elementary functions, principally trigonometric.
‘eftp’ Class functions for the FTP object.

‘general’ Miscellaneous matrix manipulations, like flipud, rot90, and triu, as well as
other basic functions, like ismatrix, narginchk, etc.

‘geometry’
Functions related to Delaunay triangulation.
‘help’ Functions for Octave’s built-in help system.
‘image’ Image processing tools. These functions require the X Window System.
‘io’ Input-output functions.

‘linear-algebra’
Functions for linear algebra.

‘miscellaneous’
Functions that don’t really belong anywhere else.
‘optimization’
Functions related to minimization, optimization, and root finding.

‘path’ Functions to manage the directory path Octave uses to find functions.
‘pkg’ Package manager for installing external packages of functions in Octave.
‘plot’ Functions for displaying and printing two- and three-dimensional graphs.
‘polynomial’

Functions for manipulating polynomials.
‘prefs’ Functions implementing user-defined preferences.
‘set’ Functions for creating and manipulating sets of unique values.

‘signal’ Functions for signal processing applications.
‘sparse’ Functions for handling sparse matrices.
‘specfun’ Special functions such as bessel or factor.

‘special-matrix’
Functions that create special matrix forms such as Hilbert or Vandermonde
matrices.

‘startup’ Octave’s system-wide startup file.

‘statistics’
Statistical functions.

‘strings’ Miscellaneous string-handling functions.
‘testfun’ Functions for performing unit tests on other functions.

‘time’ Functions related to time and date processing.

Chapter 12: Errors and Warnings 205

12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you
should print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand
them, so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking
input arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be
able to detect that an error occurred, so that the error can be fixed. This is possible with
the try statement described in Section 10.9 [The try Statement], page 168.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function f is called without any input arguments.

function f (argl)
if (nargin == 0)
error ("not enough input arguments");
endif
endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

error (template, ...) [Built-in Function]

error (id, template, ...) [Built-in Function]
Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 252) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘error: ’

Calling error also sets Octave’s internal error state such that control will return to
the top level without evaluating any more commands. This is useful for aborting from
functions or scripts.

If the error message does not end with a newline character, Octave will print a trace-
back of all the function calls leading to the error. For example, given the following
function definitions:

function £ () g (); end

function g () h (); end

function h () nargin == 1 || error ("nargin != 1"); end

calling the function £ will result in a list of messages that can help you to quickly
locate the exact location of the error:

206

GNU Octave

f 0O

error: nargin != 1

error: called from:

error: error at line -1, column -1
error: h at line 1, column 27
error: g at line 1, column 15
error: f at line 1, column 15

If the error message ends in a newline character, Octave will print the message but
will not display any traceback messages as it returns control to the top level. For
example, modifying the error message in the previous example to end in a newline
causes Octave to only print a single message:

function h () nargin == 1 || error ("margin != 1\n"); end
f 0O
error: nargin != 1

A null string ("") input to error will be ignored and the code will continue running
as if the statement were a NOP. This is for compatibility with MATLAB. It also makes
it possible to write code such as

err_msg = "";
if (CONDITION 1)

err_msg = "CONDITION 1 found";
elseif (CONDITION2)

err_msg = "CONDITION 2 found";
endif
error (err_msg);

which will only stop execution if an error has been found.

Implementation Note: For compatibility with MATLAB, escape sequences (e.g., "\n"
=> newline) are processed in template regardless of whether template has been de-
fined within single quotes as long as there are two or more input arguments. Use a
second backslash to stop interpolation of the escape sequence (e.g., "\\n") or use the
regexptranslate function.

See also: [warning], page 212, [lasterror], page 208.

Since it is common to use errors when there is something wrong with the input to a
function, Octave supports functions to simplify such code. When the print_usage function
is called, it reads the help text of the function calling print_usage, and presents a useful
error. If the help text is written in Texinfo it is possible to present an error message that
only contains the function prototypes as described by the @deftypefn parts of the help
text. When the help text isn’t written in Texinfo, the error message contains the entire
help message.

Consider the following function.

Chapter 12: Errors and Warnings 207

—*- texinfo —*-
O@deftypefn {Function File} f (@var{argl})
Function help text goes here...
Qend deftypefn
function f (argl)

if (nargin == 0)

print_usage ();

endif

endfunction

When it is called with no input arguments it produces the following error.

f O

error: Invalid call to f. Correct usage is:

-- Function File: f (ARG1)

Additional help for built-in functions and operators is
available in the online version of the manual. Use the command
‘doc <topic>’ to search the manual index.

Help and information about Octave is also available on the WWW
at http://www.octave.org and via the helpQ@octave.org
mailing list.

e o e e

print_usage () [Function File]
print_usage (name) [Function File]
Print the usage message for a function. When called with no input arguments the
print_usage function displays the usage message of the currently executing function.

See also: [help], page 20.

beep () [Function File]
Produce a beep from the speaker (or visual bell).

See also: [puts], page 251, [fputs], page 250, [printf], page 252, [fprintf], page 252.

val = beep_on_error () [Built-in Function]
old_val = beep_on_error (new_val) [Built-in Function]
beep_on_error (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will try to ring the
terminal bell before printing an error message.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

208 GNU Octave

12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described
in Section 10.9 [The try Statement], page 168. As an example, the following piece of code
counts the number of errors that occurs during a for loop.

number_of_errors = 0;
for n = 1:100
try
catch
number_of_errors++;

end_try_catch
endfor

The above example treats all errors the same. In many situations it can however be
necessary to discriminate between errors, and take different actions depending on the error.
The lasterror function returns a structure containing information about the last error
that occurred. As an example, the code above could be changed to count the number of
errors related to the ‘*’ operator.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
endif

end_try_catch
endfor

Alternatively, the output of the lasterror function can be found in a variable indicated
immediately after the catch keyword, as in the example below showing how to redirect an
error as a warning:

try
catch err
warning(err.identifier, err.message);

end_try_catch

lasterr = lasterror () [Built-in Function]
lasterror (err) [Built-in Function]
lasterror ("reset") [Built-in Function]

Query or set the last error message structure. When called without arguments, return
a structure containing the last error message and other information related to this
error. The elements of the structure are:

message The text of the last error message

Chapter 12: Errors and Warnings 209

identifier
The message identifier of this error message
stack A structure containing information on where the message occurred. This

may be an empty structure if the information cannot be obtained. The
fields of the structure are:

file The name of the file where the error occurred

name The name of function in which the error occurred

line The line number at which the error occurred

column An optional field with the column number at which the error
occurred

The last error structure may be set by passing a scalar structure, err, as input. Any
fields of err that match those above are set while any unspecified fields are initialized
with default values.

If lasterror is called with the argument "reset", all fields are set to their default
values.

See also: [lasterr], page 209, [error], page 205, [lastwarn|, page 213.

[msg, msgid] = lasterr () [Built-in Function]
lasterr (msg) [Built-in Function]
lasterr (msg, msgid) [Built-in Function]

Query or set the last error message. When called without input arguments, return
the last error message and message identifier. With one argument, set the last error
message to msg. With two arguments, also set the last message identifier.

See also: [lasterror], page 208, [error]|, page 205, [lastwarn], page 213.

It is also possible to assign an identification string to an error. If an error has such
an ID the user can catch this error as will be shown in the next example. To assign
an ID to an error, simply call error with two string arguments, where the first is the
identification string, and the second is the actual error. Note that error IDs are in the format
"NAMESPACE:ERROR-NAME". The namespace "Octave" is used for Octave’s own errors. Any
other string is available as a namespace for user’s own errors.

The next example counts indexing errors. The errors are caught using the field identifier
of the structure returned by the function lasterror.

number_of_errors = 0;
for n = 1:100
try
catch
id = lasterror.identifier;
if (strcmp (id, "Octave:invalid-indexing"))
number_of_errors++;
endif

end_try_catch
endfor

210 GNU Octave

The functions distributed with Octave can issue one of the following errors.

Octave:invalid-context
Indicates the error was generated by an operation that cannot be executed in
the scope from which it was called. For example, the function print_usage ()
when called from the Octave prompt raises this error.

Octave:invalid-input-arg
Indicates that a function was called with invalid input arguments.

Octave:invalid-fun-call
Indicates that a function was called in an incorrect way, e.g., wrong number of
input arguments.

Octave:invalid-indexing
Indicates that a data-type was indexed incorrectly, e.g., real-value index for
arrays, nonexistent field of a structure.

Octave:bad-alloc
Indicates that memory couldn’t be allocated.

Octave:undefined-function
Indicates a call to a function that is not defined. The function may exist but
Octave is unable to find it in the search path.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using
the rethrow function. The previous example can now be changed to count the number of
errors related to the ‘*’ operator, but still abort if another kind of error occurs.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
else
rethrow (lasterror);
endif
end_try_catch
endfor

rethrow (err) [Built-in Function)]
Reissue a previous error as defined by err. err is a structure that must contain at
least the "message" and "identifier" fields. err can also contain a field "stack"
that gives information on the assumed location of the error. Typically err is returned
from lasterror.

See also: [lasterror], page 208, [lasterr|, page 209, [error], page 205.

Chapter 12: Errors and Warnings 211

err = errno () [Built-in Function]
err = errno (val) [Built-in Function]
err = errno (name) [Built-in Function]

Return the current value of the system-dependent variable errno, set its value to
val and return the previous value, or return the named error code given name as a
character string, or -1 if name is not found.

errno_list () [Built-in Function]
Return a structure containing the system-dependent errno values.

12.1.3 Recovering From Errors

Octave provides several ways of recovering from errors. There are try/catch blocks,
unwind_protect/unwind_protect_cleanup blocks, and finally the onCleanup command.

The onCleanup command associates an ordinary Octave variable (the trigger) with an
arbitrary function (the action). Whenever the Octave variable ceases to exist—whether
due to a function return, an error, or simply because the variable has been removed with
clear—then the assigned function is executed.

The function can do anything necessary for cleanup such as closing open file handles,
printing an error message, or restoring global variables to their initial values. The last
example is a very convenient idiom for Octave code. For example:

function rand42
old_state = rand ("state");
restore_state = onCleanup (@() rand ("state", old_state));
rand ("state", 42);

endfunction # rand generator state restored by onCleanup

obj = onCleanup (function) [Built-in Function]
Create a special object that executes a given function upon destruction. If the object
is copied to multiple variables (or cell or struct array elements) or returned from a
function, function will be executed after clearing the last copy of the object. Note
that if multiple local onCleanup variables are created, the order in which they are
called is unspecified. For similar functionality See Section 10.8 [The unwind_protect
Statement], page 168.

12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error,
a warning doesn’t abort the currently running program. A simple example of a warning is
when a number is divided by zero. In this case Octave will issue a warning and assign the
value Inf to the result.

a=1/0
- warning: division by zero
= a = Inf

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As

212 GNU Octave

an example, the following code controls if the variable ‘a’ is non-negative, and if not issues
a warning and sets ‘a’ to zero.

a = -1;
if (a < 0)
warning ("’a’ must be non-negative. Setting ’a’ to zero.");
a = 0;
endif
- ’a’ must be non-negative. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning
using the try statement or something similar. It is however possible to access the last
warning as a string using the lastwarn function.

It is also possible to assign an identification string to a warning. If a warning has such an
ID the user can enable and disable this warning as will be described in the next section. To
assign an ID to a warning, simply call warning with two string arguments, where the first
is the identification string, and the second is the actual warning. Note that warning IDs are
in the format "NAMESPACE:WARNING-NAME". The namespace "Octave" is used for Octave’s
own warnings. Any other string is available as a namespace for user’s own warnings.

warning (template, ...) [Built-in Function]
warning (id, template cen) [Built-in Function]
warning ("on", id) [Built-in Function]
warning ("off", id) [Built-in Function]
warning ("query", id) [Built-in Function]
warning ("error", id) [Built-in Function]
warning (state, "backtrace") [Built-in Function]

]

warning (state, id, "local") [Built-in Function
Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 252) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘warning: ’. You should use this function
when you want to notify the user of an unusual condition, but only when it makes
sense for your program to go on.

The optional message identifier allows users to enable or disable warnings tagged by
id. A message identifier is of the form "NAMESPACE:WARNING-NAME". Octave’s
own warnings use the "Octave" namespace (see [XREFwarning_ids|, page 213). The
special identifier "all" may be used to set the state of all warnings.

If the first argument is "on" or "off", set the state of a particular warning using
the identifier id. If the first argument is "query", query the state of this warning
instead. If the identifier is omitted, a value of "all" is assumed. If you set the state
of a warning to "error", the warning named by id is handled as if it were an error
instead. So, for example, the following handles all warnings as errors:

warning ("error");

If the state is "on" or "off" and the third argument is "backtrace", then a stack
trace is printed along with the warning message when warnings occur inside function
calls. This option is enabled by default.

Chapter 12: Errors and Warnings 213

If the state is "on", "off", or "error" and the third argument is "local", then the
warning state will be set temporarily, until the end of the current function. Changes to
warning states that are set locally affect the current function and all functions called
from the current scope. The previous warning state is restored on return from the
current function. The "local" option is ignored if used in the top-level workspace.

Implementation Note: For compatibility with MATLAB, escape sequences (e.g., "\n"
=> newline) are processed in template regardless of whether template has been de-
fined within single quotes as long as there are two or more input arguments. Use a
second backslash to stop interpolation of the escape sequence (e.g., "\\n") or use the
regexptranslate function.

See also: [warning_ids], page 213, [lastwarn], page 213, [error|, page 205.

[msg, msgid] = lastwarn () [Built-in Function]
lastwarn (msg) [Built-in Function]
lastwarn (msg, msgid) [Built-in Function]

Query or set the last warning message. When called without input arguments, return
the last warning message and message identifier. With one argument, set the last
warning message to msg. With two arguments, also set the last message identifier.

See also: [warning], page 212, [lasterror], page 208, [lasterr], page 209.

The functions distributed with Octave can issue one of the following warnings.

Octave:abbreviated-property-match
By default, the Octave:abbreviated-property-match warning is enabled.

Octave:array-to-scalar
If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default,
the Octave:array-to-scalar warning is disabled.

Octave:array-to-vector
If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default,
the Octave:array-to-vector warning is disabled.

Octave:assign-as—truth-value
If the Octave:assign-as-truth-value warning is enabled, a warning is issued
for statements like

if (s = t)

since such statements are not common, and it is likely that the intent was to
write

if (s == t)

instead.

There are times when it is useful to write code that contains assignments within
the condition of a while or if statement. For example, statements like

214

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

GNU Octave

while (c = getc ()

are common in C programming.

It is possible to avoid all warnings about such statements by disabling the
Octave:assign-as-truth-value warning, but that may also let real errors
like

if (x = 1) # intended to test (x == 1)!

slip by.

In such cases, it is possible suppress errors for specific statements by writing
them with an extra set of parentheses. For example, writing the previous ex-
ample as

while ((c = getc ()))

will prevent the warning from being printed for this statement, while allowing
Octave to warn about other assignments used in conditional contexts.

By default, the Octave:assign-as-truth-value warning is enabled.

associativity-change
If the Octave:associativity-change warning is enabled, Octave will warn
about possible changes in the meaning of some code due to changes in associa-
tivity for some operators. Associativity changes have typically been made for
MATLAB compatibility. By default, the Octave:associativity-change warn-
ing is enabled.

autoload-relative-file-name
If the Octave:autoload-relative-file-name is enabled, Octave will warn
when parsing autoload() function calls with relative paths to function files.
This usually happens when using autoload() calls in PKG_ADD files, when the
PKG_ADD file is not in the same directory as the .oct file referred to by the
autoload() command. By default, the Octave:autoload-relative-file-name
warning is enabled.

built-in-variable-assignment
By default, the Octave:built-in-variable-assignment warning is enabled.

deprecated-keyword
If the Octave:deprecated-keyword warning is enabled, a warning is issued
when Octave encounters a keyword that is obsolete and scheduled for removal
from Octave. By default, the Octave:deprecated-keyword warning is enabled.

divide-by-zero
If the Octave:divide-by-zero warning is enabled, a warning is issued when
Octave encounters a division by zero. By default, the Octave:divide-by-zero
warning is enabled.

fopen-file-in-path
By default, the Octave:fopen-file-in-path warning is enabled.

Chapter 12: Errors and Warnings 215

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

function-name-clash
If the Octave:function-name-clash warning is enabled, a warning is issued
when Octave finds that the name of a function defined in a function file differs
from the name of the file. (If the names disagree, the name declared inside

the file is ignored.) By default, the Octave:function-name-clash warning is
enabled.

future-time-stamp
If the Octave:future-time-stamp warning is enabled, Octave will print a
warning if it finds a function file with a time stamp that is in the future. By
default, the Octave:future-time-stamp warning is enabled.

glyph-render
By default, the Octave:glyph-render warning is enabled.

imag-to-real
If the Octave:imag-to-real warning is enabled, a warning is printed for
implicit conversions of complex numbers to real numbers. By default, the
Octave:imag-to-real warning is disabled.

language-extension
Print warnings when using features that are unique to the Octave language
and may be still be missing in MATLAB. By default, the Octave:language-
extension warning is disabled. The —traditional or —braindead startup options
for Octave may also be of use, see Section 2.1.1 [Command Line Options],
page 15.

load-file-in-path
By default, the Octave:load-file-in-path warning is enabled.

logical-conversion
By default, the Octave:logical-conversion warning is enabled.

md5sum-file-in-path
By default, the Octave:md5sum-file-in-path warning is enabled.

missing-glyph
By default, the Octave:missing-glyph warning is enabled.

missing-semicolon
If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

mixed-string-concat
If the Octave :mixed-string-concat warning is enabled, print a warning when
concatenating a mixture of double and single quoted strings. By default, the
Octave:mixed-string-concat warning is disabled.

neg-dim-as-zero
If the Octave:neg-dim-as-zero warning is enabled, print a warning for ex-
pressions like

216

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

GNU Octave

eye (-1)
By default, the Octave:neg-dim-as-zero warning is disabled.

nested-functions-coerced
By default, the Octave:nested-functions-coerced warning is enabled.

noninteger-range-as-index
By default, the Octave:noninteger-range-as-index warning is enabled.

num-to-str

If the Octave:num-to-str warning is enable, a warning is printed for implicit
conversions of numbers to their ASCII character equivalents when strings are
constructed using a mixture of strings and numbers in matrix notation. For
example,

["f", 111, 111 1]

= "foo"
elicits a warning if the Octave :num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

possible-matlab-short-circuit-operator
If the Octave:possible-matlab-short-circuit-operator warning is
enabled, Octave will warn about using the not short circuiting operators &
and | inside if or while conditions. They normally never short circuit, but
MATLAB always short circuits if any logical operators are used in a condition.
You can turn on the option

do_braindead_shortcircuit_evaluation (1)

if you would like to enable this short-circuit evaluation in Octave. Note that the
&& and | | operators always short circuit in both Octave and MATLAB, so it’s only
necessary to enable MATLAB-style short-circuiting if it’s too arduous to modify
existing code that relies on this behavior. By default, the Octave:possible-
matlab-short-circuit-operator warning is enabled.

precedence-change
If the Octave:precedence-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in precedence
for some operators. Precedence changes have typically been made for MATLAB
compatibility. By default, the Octave:precedence-change warning is enabled.

recursive-path-search
By default, the Octave:recursive-path-search warning is enabled.

remove-init-dir
The path function changes the search path that Octave uses to find functions.
It is possible to set the path to a value which excludes Octave’s own built-in
functions. If the Octave:remove-init-dir warning is enabled then Octave will
warn when the path function has been used in a way that may render Octave
unworkable. By default, the Octave:remove-init-dir warning is enabled.

reload-forces-clear
If several functions have been loaded from the same file, Octave must clear all
the functions before any one of them can be reloaded. If the Octave:reload-

Chapter 12: Errors and Warnings 217

forces-clear warning is enabled, Octave will warn you when this happens,
and print a list of the additional functions that it is forced to clear. By default,
the Octave:reload-forces-clear warning is enabled.

Octave:resize-on-range-error
If the Octave:resize-on-range-error warning is enabled, print a warning
when a matrix is resized by an indexed assignment with indices outside the
current bounds. By default, the ## Octave:resize-on-range-error warning
is disabled.

Octave:separator-insert
Print warning if commas or semicolons might be inserted automatically in literal
matrices. By default, the Octave:separator-insert warning is disabled.

Octave:shadowed-function
By default, the Octave:shadowed-function warning is enabled.

Octave:single-quote-string
Print warning if a single quote character is used to introduce a string constant.
By default, the Octave:single-quote-string warning is disabled.

Octave:nearly-singular-matrix

Octave:singular-matrix
By default, the Octave:nearly-singular-matrix and Octave:singular-
matrix warnings are enabled.

Octave:sqrtm:SingularMatrix
By default, the Octave:sqrtm:SingularMatrix warning is enabled.

Octave:str-to-num
If the Octave:str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,

"abc" + 0
= 97 98 99

elicits a warning if the Octave: str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

Octave:undefined-return-values
If the Octave:undefined-return-values warning is disabled, print a warning
if a function does not define all the values in the return list which are expected.
By default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label
If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.

12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to
the screen. If the warning function is called with a string argument that is either "on" or
"off" all warnings will be enabled or disabled.

218 GNU Octave

It is also possible to enable and disable individual warnings through their string identi-
fications. The following code will issue a warning
warning ("example:non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");

while the following won’t issue a warning

warning ("off", "example:non-negative-variable");
warning ("example:non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");

Chapter 13: Debugging 219

13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used
to interrupt the execution of an Octave script at a certain point, or when certain conditions
are met. Once execution has stopped, and debug mode is entered, the symbol table at the
point where execution has stopped can be examined and modified to check for errors.

The normal command-line editing and history functions are available in debug mode.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are
breakpoints (see Section 13.3 [Breakpoints], page 220), discussed in the next section, and
interruption based on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning, and debug_on_error.

val = debug_on_interrupt () [Built-in Function]
old_val = debug_on_interrupt (new_val) [Built-in Function]
debug_on_interrupt (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will try to enter
debugging mode when it receives an interrupt signal (typically generated with C-c).
If a second interrupt signal is received before reaching the debugging mode, a normal
interrupt will occur.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [debug_on_error], page 219, [debug_on_warning], page 219.

val = debug_on_warning () [Built-in Function]
old_val = debug_on_warning (new_val) [Built-in Function]
debug_on_warning (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will try to enter the
debugger when a warning is encountered.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [debug_on_error], page 219, [debug_on_interrupt], page 219.

val = debug_on_error () [Built-in Function]
old_val = debug_on_error (new_val) [Built-in Function]
debug_on_error (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will try to enter the
debugger when an error is encountered. This will also inhibit printing of the normal
traceback message (you will only see the top-level error message).

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

220 GNU Octave

See also: [debug_on_warning], page 219, [debug_on_interrupt], page 219.

13.2 Leaving Debug Mode

Use either dbcont or return to leave the debug mode and continue the normal execution
of the script.

dbcont [Command|
Leave command-line debugging mode and continue code execution normally.

See also: [dbstep|, page 223, [dbquit], page 220.

To quit debug mode and return directly to the prompt without executing any additional
code use dbquit.

dbquit [Command]|
Quit debugging mode immediately without further code execution and return to the
Octave prompt.

See also: [dbcont], page 220, [dbstep], page 223.

Finally, typing exit or quit at the debug prompt will result in Octave terminating
normally.

13.3 Breakpoints

Breakpoints can be set in any m-file function by using the dbstop function.

dbstop func [Command]
dbstop func line [Command]
dbstop func linel line2 ... [Command]
dbstop line ... [Command]|
rline = dbstop ("func") [Built-in Function]
rline = dbstop ("func", line) [Built-in Function]
rline = dbstop ("func", linel, line2, ...) [Built-in Function]
dbstop ("func", [linel, ...]) [Built-in Function]
dbstop (line, ...) [Built-in Function]

Set a breakpoint at line number line in function func.

Arguments are

func Function name as a string variable. When already in debug mode this
argument can be omitted and the current function will be used.

line Line number where the breakpoint should be set. Multiple lines may be
given as separate arguments or as a vector.

When called with a single argument func, the breakpoint is set at the first executable
line in the named function.

The optional output rline is the real line number where the breakpoint was set. This
can differ from the specified line if the line is not executable. For example, if a
breakpoint attempted on a blank line then Octave will set the real breakpoint at the
next executable line.

Chapter 13: Debugging 221

See also: [dbclear|, page 221, [dbstatus], page 221, [dbstep], page 223,
[debug_on_error|, page 219, [debug_on_warning], page 219, [debug_on_interrupt],
page 219.

Breakpoints in class methods are also supported (e.g., dbstop ("@class/method")). How-
ever, breakpoints cannot be set in built-in functions (e.g., sin, etc.) or dynamically loaded
functions (i.e., oct-files).

To set a breakpoint immediately upon entering a function use line number 1, or omit
the line number entirely and just give the function name. When setting the breakpoint
Octave will ignore the leading comment block, and the breakpoint will be set on the first
executable statement in the function. For example:

dbstop ("asind", 1)
= 29

Note that the return value of 29 means that the breakpoint was effectively set to line 29.
The status of breakpoints in a function can be queried with dbstatus.

dbstatus () [Built-in Function]
brk_list = dbstatus () [Built-in Function]
brk_list = dbstatus ("func") [Built-in Function]

Report the location of active breakpoints.

When called with no input or output arguments, print the list of all functions with
breakpoints and the line numbers where those breakpoints are set. If a function name
func is specified then only report breakpoints for the named function.

The optional return argument brk_list is a struct array with the following fields.

name The name of the function with a breakpoint.
file The name of the m-file where the function code is located.
line A line number, or vector of line numbers, with a breakpoint.

Note: When dbstatus is called from the debug prompt within a function, the list of
breakpoints is automatically trimmed to the breakpoints in the current function.

See also: [dbclear], page 221, [dbwhere|, page 223.

Reusing the previous example, dbstatus ("asind") will return 29. The breakpoints listed
can then be cleared with the dbclear function.

dbclear func [Command
dbclear func line [Command
dbclear func linel line2 ... [Command
dbclear line ... [Command
dbclear all [Command
dbclear ("func") Built-in Function

([
dbclear ("func", line) [Built-in Function
dbclear ("func", linel, line2, ...) [Built-in Function
dbclear ("func", [linel, ...]) [Built-in Function
dbclear (line, ...) [Built-in Function

]
]
]
]
]
]
]
]
]
]

222 GNU Octave

dbclear ("all") [Built-in Function]
Delete a breakpoint at line number line in the function func.

Arguments are

func Function name as a string variable. When already in debug mode this
argument can be omitted and the current function will be used.

line Line number from which to remove a breakpoint. Multiple lines may be
given as separate arguments or as a vector.

When called without a line number specification all breakpoints in the named function
are cleared.

If the requested line is not a breakpoint no action is performed.

The special keyword "all" will clear all breakpoints from all files.

See also: [dbstop|, page 220, [dbstatus], page 221, [dbwhere], page 223.

A breakpoint may also be set in a subfunction. For example, if a file contains the
functions

function y = funcl (x)
y = func2 (x);
endfunction
function y = func2 (x)
y=x+1;
endfunction
then a breakpoint can be set at the start of the subfunction directly with

dbstop (["funcl", filemarker(), "func2"])
- 5

Note that filemarker returns the character that marks subfunctions from the file con-
taining them. Unless the default has been changed this character is ‘>’. Thus, a quicker
and more normal way to set the breakpoint would be

dbstop funcl>func2

Another simple way of setting a breakpoint in an Octave script is the use of the keyboard
function.

keyboard () [Built-in Function]

keyboard ("prompt") [Built-in Function]
This function is normally used for simple debugging. When the keyboard function
is executed, Octave prints a prompt and waits for user input. The input strings are
then evaluated and the results are printed. This makes it possible to examine the
values of variables within a function, and to assign new values if necessary. To leave
the prompt and return to normal execution type ‘return’ or ‘dbcont’. The keyboard
function does not return an exit status.

If keyboard is invoked without arguments, a default prompt of ‘debug> ’ is used.

See also: [dbstop], page 220, [dbcont], page 220, [dbquit], page 220.

The keyboard function is placed in a script at the point where the user desires that the
execution be stopped. It automatically sets the running script into the debug mode.

Chapter 13: Debugging 223

13.4 Debug Mode

There are three additional support functions that allow the user to find out where in the
execution of a script Octave entered the debug mode, and to print the code in the script
surrounding the point where Octave entered debug mode.

dbwhere [Command]
In debugging mode, report the current file and line number where execution is
stopped.
See also: [dbstatus|, page 221, [dbcont], page 220, [dbstep], page 223, [dbup],
page 225.
dbtype Command
dbtype lineno Command
dbtype startl:endl Command
dbtype startl:end Command

[]
[]
[]
[]
dbtype func [Command]
[]
[]
[]

dbtype func lineno Command
dbtype func startl:endl Command
dbtype func startl:end Command

Display a script file with line numbers.

When called with no arguments in debugging mode, display the script file currently
being debugged. An optional range specification can be used to list only a portion of
the file. The special keyword "end" is a valid line number specification for the last
line of the file.

When called with the name of a function, list that script file with line numbers.

See also: [dbwhere], page 223, [dbstatus], page 221, [dbstop], page 220.
dblist [Command]
dblist n [Command]

In debugging mode, list n lines of the function being debugged centered around the
current line to be executed. If unspecified n defaults to 10 (+/- 5 lines)

See also: [dbwhere], page 223, [dbtype|, page 223.
You may also use isdebugmode to determine whether the debugger is currently active.

isdebugmode () [Built-in Function]
Return true if in debugging mode, otherwise false.
See also: [dbwhere], page 223, [dbstack], page 224, [dbstatus], page 221.

Debug mode also allows single line stepping through a function using the command
dbstep.

dbstep [Command]
dbstep n [Command]
dbstep in [Command]
dbstep out [Command]

224 GNU Octave

dbnext ... [Command]
In debugging mode, execute the next n lines of code. If n is omitted, execute the
next single line of code. If the next line of code is itself defined in terms of an m-file
remain in the existing function.

Using dbstep in will cause execution of the next line to step into any m-files defined
on the next line. Using dbstep out will cause execution to continue until the current
function returns.

dbnext is an alias for dbstep.

See also: [dbcont], page 220, [dbquit], page 220.

When in debug mode the RETURN key will execute the last entered command. This is
useful, for example, after hitting a breakpoint and entering dbstep once. After that, one
can advance line by line through the code with only a single key stroke.

13.5 Call Stack

The function being debugged may be the leaf node of a series of function calls. After
examining values in the current subroutine it may turn out that the problem occurred in
earlier pieces of code. Use dbup and dbdown to move up and down through the series of
function calls to locate where variables first took on the wrong values. dbstack shows the
entire series of function calls and at what level debugging is currently taking place.

dbstack [Command]
dbstack n [Command]
dbstack -completenames [Command]|
[stack, idx] = dbstack (...) [Built-in Function]

Display or return current debugging function stack information. With optional argu-
ment n, omit the n innermost stack frames.

Although accepted, the argument -completenames is silently ignored. Octave always
returns absolute file names. The arguments n and -completenames can be both spec-
ified in any order.

The optional return argument stack is a struct array with the following fields:

file The name of the m-file where the function code is located.
name The name of the function with a breakpoint.

line The line number of an active breakpoint.

column The column number of the line where the breakpoint begins.
scope Undocumented.

context Undocumented.

The return argument idx specifies which element of the stack struct array is currently
active.

See also: [dbup|, page 225, [dbdown], page 225, [dbwhere], page 223, [dbstatus],
page 221.

Chapter 13: Debugging 225

dbup [Command|

dbup n [Command]|
In debugging mode, move up the execution stack n frames. If n is omitted, move up
one frame.

See also: [dbstack], page 224, [dbdown]|, page 225.

dbdown [Command|

dbdown n [Command]
In debugging mode, move down the execution stack n frames. If n is omitted, move
down one frame.

See also: [dbstack]|, page 224, [dbup], page 225.

13.6 Profiling

Octave supports profiling of code execution on a per-function level. If profiling is enabled,
each call to a function (supporting built-ins, operators, functions in oct- and mex-files, user-
defined functions in Octave code and anonymous functions) is recorded while running Octave
code. After that, this data can aid in analyzing the code behavior, and is in particular helpful
for finding “hot spots” in the code which use up a lot of computation time and are the best
targets to spend optimization efforts on.

The main command for profiling is profile, which can be used to start or stop the
profiler and also to query collected data afterwards. The data is returned in an Octave data
structure which can then be examined or further processed by other routines or tools.

profile on [Command|
profile off [Command]
profile resume [Command]|
profile clear [Command]|
S = profile ("status") [Function File]
T = profile ("info") [Function File]

Control the built-in profiler.

profile on
Start the profiler, clearing all previously collected data if there is any.

profile off
Stop profiling. The collected data can later be retrieved and examined
with calls like S = profile ("info").

profile clear
Clear all collected profiler data.

profile resume
Restart profiling without cleaning up the old data and instead all newly
collected statistics are added to the already existing ones.

S = profile ("status")
Return a structure filled with certain information about the current status
of the profiler. At the moment, the only field is ProfilerStatus which
is either "on" or "off".

226 GNU Octave

T = profile ("info")

Return the collected profiling statistics in the structure T. The flat profile
is returned in the field FunctionTable which is an array of structures,
each entry corresponding to a function which was called and for which pro-
filing statistics are present. Furthermore, the field Hierarchical contains
the hierarchical call-tree. Each node has an index into the FunctionTable
identifying the function it corresponds to as well as data fields for number
of calls and time spent at this level in the call-tree.

See also: [profshow|, page 226, [profexplore|, page 226.

An easy way to get an overview over the collected data is profshow. This function takes
the profiler data returned by profile as input and prints a flat profile, for instance:

Function Attr Time (s) Calls

>myfib R 2.195 13529
binary <= 0.061 13529
binary - 0.050 13528
binary + 0.026 6764

This shows that most of the run time was spent executing the function ‘myfib’, and
some minor proportion evaluating the listed binary operators. Furthermore, it is shown
how often the function was called and the profiler also records that it is recursive.

profshow (data) [Function File]

profshow (data, n) [Function File]

profshow () [Function File]

profshow (n) [Function File]
Display flat per-function profiler results.

Print out profiler data (execution time, number of calls) for the most critical n func-
tions. The results are sorted in descending order by the total time spent in each
function. If n is unspecified it defaults to 20.

The input data is the structure returned by profile ("info"). If unspecified,
profshow will use the current profile dataset.

The attribute column displays ‘R’ for recursive functions, and is blank for all other
function types.

See also: [profexplore|, page 226, [profile|, page 225.

profexplore () [Function File]
profexplore (data) [Function File]
Interactively explore hierarchical profiler output.

Assuming data is the structure with profile data returned by profile ("info"),
this command opens an interactive prompt that can be used to explore the call-tree.
Type help to get a list of possible commands. If data is omitted, profile ("info")
is called and used in its place.

See also: [profile], page 225, [profshow], page 226.

Chapter 13: Debugging 227

13.7 Profiler Example

Below, we will give a short example of a profiler session. See Section 13.6 [Profiling],
page 225, for the documentation of the profiler functions in detail. Consider the code:

global N A;
N = 300;
A = rand (N, N);

function xt = timesteps (steps, x0, expM)
global N;

if (steps == 0)
xt = NA (N, 0);

else
xt = NA (N, steps);
xl = expM * x0;

xt(:, 1) = x1;
xt(:, 2 : end) = timesteps (steps - 1, x1, expM);
endif
endfunction

function foo ()
global N A;

initial = @(x) sin (x);
x0 = (initial (linspace (0, 2 * pi, N)))’;

expA = expm (A);
xt = timesteps (100, x0, exph);

endfunction

function fib = bar (N)

if (N <= 2)
fib = 1;
else
fib = bar (N - 1) + bar (N - 2);
endif
endfunction

If we execute the two main functions, we get:

tic; foo; toc;
= Elapsed time is 2.37338 seconds.

tic; bar (20); toc;
= Elapsed time is 2.04952 seconds.

228 GNU Octave

But this does not give much information about where this time is spent; for instance,
whether the single call to expm is more expensive or the recursive time-stepping itself. To
get a more detailed picture, we can use the profiler.

profile on;

foo;
profile off;

data = profile ("info");
profshow (data, 10);

This prints a table like:

Function Attr Time (s) Calls
7 expm 1.034 1
3 Dbinary * 0.823 117
41 binary \ 0.188 1
38 binary ~ 0.126 2
43 timesteps R 0.111 101
44 NA 0.029 101
39 binary + 0.024 8
34 norm 0.011 1
40 binary - 0.004 101
33 balance 0.003 1

The entries are the individual functions which have been executed (only the 10 most
important ones), together with some information for each of them. The entries like ‘binary
*x” denote operators, while other entries are ordinary functions. They include both built-
ins like expm and our own routines (for instance timesteps). From this profile, we can
immediately deduce that expm uses up the largest proportion of the processing time, even
though it is only called once. The second expensive operation is the matrix-vector product
in the routine timesteps.!

Timing, however, is not the only information available from the profile. The attribute
column shows us that timesteps calls itself recursively. This may not be that remarkable
in this example (since it’s clear anyway), but could be helpful in a more complex setting.
As to the question of why is there a ‘binary \’ in the output, we can easily shed some
light on that too. Note that data is a structure array (Section 6.1.2 [Structure Arrays|,
page 103) which contains the field FunctionTable. This stores the raw data for the profile
shown. The number in the first column of the table gives the index under which the shown
function can be found there. Looking up data.FunctionTable(41) gives:

L We only know it is the binary multiplication operator, but fortunately this operator appears only at one
place in the code and thus we know which occurrence takes so much time. If there were multiple places,
we would have to use the hierarchical profile to find out the exact place which uses up the time which is
not covered in this example.

Chapter 13: Debugging 229

scalar structure containing the fields:

FunctionName = binary \
TotalTime = 0.18765
NumCalls = 1
IsRecursive = 0

Parents = 7

Children = [](1x0)

Here we see the information from the table again, but have additional fields Parents
and Children. Those are both arrays, which contain the indices of functions which have
directly called the function in question (which is entry 7, expm, in this case) or been called
by it (no functions). Hence, the backslash operator has been used internally by expm.

Now let’s take a look at bar. For this, we start a fresh profiling session (profile on
does this; the old data is removed before the profiler is restarted):

profile on;
bar (20);
profile off;

profshow (profile ("info"));

This gives:
Function Attr Time (s) Calls
1 bar R 2.091 13529
2 binary <= 0.062 13529
3 binary - 0.042 13528
4 binary + 0.023 6764
5 profile 0.000 1
8 false 0.000 1
6 nargin 0.000 1
7 binary != 0.000 1
9 __profiler_enable__ 0.000 1

Unsurprisingly, bar is also recursive. It has been called 13,529 times in the course of
recursively calculating the Fibonacci number in a suboptimal way, and most of the time
was spent in bar itself.

Finally, let’s say we want to profile the execution of both foo and bar together. Since
we already have the run-time data collected for bar, we can restart the profiler without
clearing the existing data and collect the missing statistics about foo. This is done by:

profile resume;

foo;

profile off;

profshow (profile ("info"), 10);

As you can see in the table below, now we have both profiles mixed together.

230 GNU Octave

Function Attr Time (s) Calls
1 bar R 2.091 13529
16 expm 1.122 1
12 Dbinary * 0.798 117
46 Dbinary \ 0.185 1
45 binary ~ 0.124 2
48 timesteps R 0.115 101
2 binary <= 0.062 13529
3 binary - 0.045 13629
4 Dbinary + 0.041 6772
49 NA 0.036 101

Chapter 14: Input and Output 231

14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file.
The simplest functions for data Input and Output (I/O) are easy to use, but only provide
limited control of how data is processed. For more control, a set of functions modeled after
the C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression
will display the value of ‘pi’

pi
-4 pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or ‘ans’)
printed along with the value. To print the value of a variable without printing its name,
use the function disp.

The format command offers some control over the way Octave prints values with disp
and through the normal echoing mechanism.

disp (x) [Built-in Function]
Display the value of x. For example:

disp ("The value of pi is:"), disp (pi)

- the value of pi is:
- 3.1416

Note that the output from disp always ends with a newline.

If an output value is requested, disp prints nothing and returns the formatted output
in a string.

See also: [fdisp|, page 242.

list_in_columns (arg, width, prefix) [Built-in Function]
Return a string containing the elements of arg listed in columns with an overall
maximum width of width and optional prefix prefix. The argument arg must be a
cell array of character strings or a character array. If width is not specified or is an
empty matrix, or less than or equal to zero, the width of the terminal screen is used.
Newline characters are used to break the lines in the output string. For example:

232

GNU Octave

list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)

= abc mnop
def qrs
ghijkl tuv
whos ans
=

Variables in the current scope:

Attr Name Size Bytes Class
ans 1x37 37 char
Total is 37 elements using 37 bytes
See also: [terminal_size], page 232.
terminal_size () [Built-in Function]

Return a two-element row vector containing the current size of the terminal window
in characters (rows and columns).

See also: [list_in_columns|, page 231.

format

format options

[Command]
[Command]|

Reset or specify the format of the output produced by disp and Octave’s normal
echoing mechanism. This command only affects the display of numbers but not how
they are stored or computed. To change the internal representation from the default
double use one of the conversion functions such as single, uint8, int64, etc.

By default, Octave displays 5 significant digits in a human readable form (option
‘short’ paired with ‘loose’ format for matrices). If format is invoked without any
options, this default format is restored.

Valid formats for floating point numbers are listed in the following table.

short

long

short e
long e

Fixed point format with 5 significant figures in a field that is a maximum
of 10 characters wide. (default).

If Octave is unable to format a matrix so that columns line up on the
decimal point and all numbers fit within the maximum field width then
it switches to an exponential ‘e’ format.

Fixed point format with 15 significant figures in a field that is a maximum
of 20 characters wide.

As with the ‘short’ format, Octave will switch to an exponential ‘e’
format if it is unable to format a matrix properly using the current format.

Exponential format. The number to be represented is split between a
mantissa and an exponent (power of 10). The mantissa has 5 significant
digits in the short format and 15 digits in the long format. For example,
with the ‘short e’ format, pi is displayed as 3.1416e+00.

Chapter 14: Input and Output 233

short E
long E Identical to ‘short e’ or ‘long e’ but displays an uppercase ‘E’ to indicate
the exponent. For example, with the ‘long E’ format, pi is displayed as
3.14159265358979E+00.
short g
long g Optimally choose between fixed point and exponential format based on
the magnitude of the number. For example, with the ‘short g’ format,
pi .~ [2; 4; 8; 16; 32] is displayed as
ans =
9.8696
97.409
9488.5
9.0032e+07
8.1058e+15
short eng

long eng Identical to ‘short e’ or ‘long e’ but displays the value using an engi-
neering format, where the exponent is divisible by 3. For example, with
the ‘short eng’ format, 10 * pi is displayed as 31.4159e+00.

long G
short G Identical to ‘short g’ or ‘long g’ but displays an uppercase ‘E’ to indicate
the exponent.

free

none Print output in free format, without trying to line up columns of matrices
on the decimal point. This also causes complex numbers to be format-
ted as numeric pairs like this ‘(0.60419, 0.60709)’ instead of like this
‘0.60419 + 0.607091".

The following formats affect all numeric output (floating point and integer types).

ll+ll

"+" chars

plus

plus chars
Print a ‘+’ symbol for matrix elements greater than zero, a ‘-’ symbol for
elements less than zero and a space for zero matrix elements. This format
can be very useful for examining the structure of a large sparse matrix.

The optional argument chars specifies a list of 3 characters to use for
printing values greater than zero, less than zero and equal to zero. For
example, with the “"+" "+-_"" format, [1, 0, -1; -1, 0, 1] is displayed
as

bank Print in a fixed format with two digits to the right of the decimal point.

234 GNU Octave

native-hex
Print the hexadecimal representation of numbers as they are stored in
memory. For example, on a workstation which stores 8 byte real values
in IEEE format with the least significant byte first, the value of pi when
printed in native-hex format is 400921fb54442d18.

hex The same as native-hex, but always print the most significant byte first.

native-bit
Print the bit representation of numbers as stored in memory. For example,
the value of pi is

01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed
in native-bit format on a workstation which stores 8 byte real values in
IEEE format with the least significant byte first.

bit The same as native-bit, but always print the most significant bits first.

rat Print a rational approximation, i.e., values are approximated as the ratio
of small integers. For example, with the ‘rat’ format, pi is displayed as
355/113.

The following two options affect the display of all matrices.

compact Remove blank lines around column number labels and between matrices
producing more compact output with more data per page.

loose Insert blank lines above and below column number labels and between
matrices to produce a more readable output with less data per page.

(default).

See also: [fixed_point_format], page 50, [output_max_field_width], page 49,
[output_precision], page 50, [split_long_rows|, page 50, [rats], page 452.

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal
that is more than one screen long to a paging program, such as less or more. This avoids
the problem of having a large volume of output stream by before you can read it. With
less (and some versions of more) you can also scan forward and backward, and search for
specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on
your screen if you have asked Octave to perform a significant amount of work with a single
command statement. The function fflush may be used to force output to be sent to the
pager (or any other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can
turn paging off by using the function more.

Chapter 14: Input and Output 235

more [Command]
more on [Command]
more off [Command]

Turn output pagination on or off. Without an argument, more toggles the current
state. The current state can be determined via page_screen_output.

See also: [page_screen_output], page 235, [page_output_immediately], page 235,
[PAGER], page 235, [PAGER_FLAGS], page 235.

val = PAGER () [Built-in Function]
old_val = PAGER (new_val) [Built-in Function]
PAGER (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the program to use to display ter-
minal output on your system. The default value is normally "less", "more", or
"pg", depending on what programs are installed on your system. See Appendix G
[Installation], page 875.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PAGER_FLAGS], page 235, [page_output_immediately], page 235, [more],
page 234, [page_screen_output|, page 235.

val = PAGER_FLAGS () [Built-in Function]
old_val = PAGER_FLAGS (new_val) [Built-in Function]
PAGER_FLAGS (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the options to pass to the pager.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PAGER], page 235, [more|, page 234, [page_screen_output], page 235,
[page_output_immediately], page 235.

val = page_screen_output () [Built-in Function]
old_val = page_screen_output (new_val) [Built-in Function]
page_screen_output (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether output intended for the
terminal window that is longer than one page is sent through a pager. This allows
you to view one screenful at a time. Some pagers (such as less—see Appendix G
[Installation|, page 875) are also capable of moving backward on the output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [more], page 234, [page_output_immediately], page 235, [PAGER], page 235,
[PAGER_FLAGS], page 235.

val = page_output_immediately () [Built-in Function]
old_val = page_output_immediately (new_val) [Built-in Function]

236 GNU Octave

page_output_immediately (new_val, "local") [Built-in Function]
Query or set the internal variable that controls whether Octave sends output to the
pager as soon as it is available. Otherwise, Octave buffers its output and waits until
just before the prompt is printed to flush it to the pager.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [page_screen_output], page 235, [more|, page 234, [PAGER]|, page 235,
[PAGER_FLAGS], page 235.

fflush (fid) [Built-in Function]
Flush output to file descriptor fid.

fflush returns 0 on success and an OS dependent error value (—1 on Unix) on error.

Programming Note: Flushing is useful for ensuring that all pending output makes it
to the screen before some other event occurs. For example, it is always a good idea
to flush the standard output stream before calling input.

See also: [fopen|, page 249, [fclose], page 250.

14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and
menu functions are normally used for managing an interactive dialog with a user, and the
keyboard function is normally used for doing simple debugging.

ans = input (prompt) [Built-in Function]
ans = input (prompt, "s") [Built-in Function]
Print prompt and wait for user input.
For example,
input ("Pick a number, any number! ")
prints the prompt

Pick a number, any number!

and waits for the user to enter a value. The string entered by the user is evaluated
as an expression, so it may be a literal constant, a variable name, or any other valid
Octave code.

The number of return arguments, their size, and their class depend on the expression
entered.

If you are only interested in getting a literal string value, you can call input with the
character string "s" as the second argument. This tells Octave to return the string
entered by the user directly, without evaluating it first.

Because there may be output waiting to be displayed by the pager, it is a good idea to
always call £flush (stdout) before calling input. This will ensure that all pending
output is written to the screen before your prompt.

See also: [yes_or_no|, page 237, [kbhit], page 237, [pause], page 736, [menu], page 237,
[listdlg], page 780.

Chapter 14: Input and Output 237

choice = menu (title, optl, ...) [Function File]
choice = menu (title, {optl,...}) [Function File]
Display a menu with heading title and options optl, ..., and wait for user input.

If the GUI is running, or Java is available, the menu is displayed graphically using
listdlg. Otherwise, the title and menu options are printed on the console.

title is a string and the options may be input as individual strings or as a cell array
of strings.

The return value choice is the number of the option selected by the user counting
from 1.

This function is useful for interactive programs. There is no limit to the number of
options that may be passed in, but it may be confusing to present more than will fit
easily on one screen.

See also: [input], page 236, [listdlg], page 780.

ans = yes_or_no ("prompt") [Built-in Function]
Ask the user a yes-or-no question.
Return logical true if the answer is yes or false if the answer is no. Takes one argument,
prompt, which is the string to display when asking the question. prompt should end
in a space; yes-or-no adds the string ‘(yes or no) ’ to it. The user must confirm
the answer with RET and can edit it until it has been confirmed.

See also: [input], page 236.

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the
keyboard without requiring the user to type a carriage return.

kbhit () [Built-in Function]

kbhit (1) [Built-in Function]
Read a single keystroke from the keyboard. If called with an argument, don’t wait
for a keypress. For example,

x = kbhit (;
will set x to the next character typed at the keyboard as soon as it is typed.

x = kbhit (1);
is identical to the above example, but doesn’t wait for a keypress, returning the empty
string if no key is available.

See also: [input], page 236, [pause|, page 736.
14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using
the functions save_default_options and save_precision.

As an example the following code creates a 3-by-3 matrix and saves it to the file
‘myfile.mat’.

238

GNU Octave

A=1[1:3; 4:6; 7:9 1;
save myfile.mat A

Once one or more variables have been saved to a file, they can be read into memory
using the load command.

save
save
save
save
save
s =

load myfile.mat

A

1A=

_{

— 1 2 3

- 5 6

. 7 8 9
file [Command]
options file [Command]|
options file v1 v2 ... [Command]
options file -struct STRUCT f1 £2 ... [Command]|
"-"yvlv2 ... [Command|
save ("-"v1 v2...) [Built-in Function]
Save the named variables v1, v2, ..., in the file file. The special filename ‘-’ may be

used to return the content of the variables as a string. If no variable names are listed,
Octave saves all the variables in the current scope. Otherwise, full variable names or
pattern syntax can be used to specify the variables to save. If the ‘-struct’ modifier
is used, fields fI f2 ... of the scalar structure STRUCT are saved as if they were
variables with corresponding names. Valid options for the save command are listed
in the following table. Options that modify the output format override the format
specified by save_default_options.

If save is invoked using the functional form
save ("-optionl", ..., "file", "v1i", ...)

then the options, file, and variable name arguments (v1, ...) must be specified as
character strings.

If called with a filename of "-", write the output to stdout if nargout is 0, otherwise
return the output in a character string.

-append Append to the destination instead of overwriting.
-ascii Save a single matrix in a text file without header or any other information.
-binary Save the data in Octave’s binary data format.

-float-binary
Save the data in Octave’s binary data format but only using single pre-
cision. Only use this format if you know that all the values to be saved
can be represented in single precision.

-hdf5 Save the data in HDF5 format. (HDF5 is a free, portable binary format
developed by the National Center for Supercomputing Applications at
the University of Illinois.) This format is only available if Octave was
built with a link to the HDF5 libraries.

Chapter 14: Input and Output 239

—-float-hdf5

-7
-v7
-7

Save the data in HDF5 format but only using single precision. Only use
this format if you know that all the values to be saved can be represented
in single precision.

-mat7-binary

-Vé
-v6
-6
-mat

Save the data in MATLAB’s v7 binary data format.

-mat-binary

Save the data in MATLAB’s v6 binary data format.

-mat4-binary

-text

-zip

Save the data in the binary format written by MATLAB version 4.

Save the data in Octave’s text data format. (default).

Use the gzip algorithm to compress the file. This works equally on files
that are compressed with gzip outside of octave, and gzip can equally be
used to convert the files for backward compatibility. This option is only
available if Octave was built with a link to the zlib libraries.

The list of variables to save may use wildcard patterns containing the following special

characters:
?
*

[1ist]

Match any single character.
Match zero or more characters.

Match the list of characters specified by list. If the first character is ! or
=, match all characters except those specified by list. For example, the
pattern [a-zA-Z] will match all lower and uppercase alphabetic charac-
ters.

Wildcards may also be used in the field name specifications when using
the ‘-struct’ modifier (but not in the struct name itself).

Except when using the MATLAB binary data file format or the ‘-ascii’ format, saving
global variables also saves the global status of the variable. If the variable is restored
at a later time using ‘load’, it will be restored as a global variable.

The command

save -binary data a bx*

240 GNU Octave

saves the variable ‘a’ and all variables beginning with ‘b’ to the file ‘data’ in Octave’s
binary format.

See also: [load], page 240, [save_default_options], page 240, [save_header_format_string],Jj
page 240, [dlmread|, page 243, [csvread], page 244, [fread], page 261.

There are three functions that modify the behavior of save.

val = save_default_options () [Built-in Function]
old_val = save_default_options (new_val) [Built-in Function]
save_default_options (new_val, "local") [Built-in Function]
Query or set the internal variable that specifies the default options for the save
command, and defines the default format. Typical values include "-ascii", "-text

-zip". The default value is ‘~text’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [save|, page 238.

val = save_precision () [Built-in Function]
old_val = save_precision (new_val) [Built-in Function]
save_precision (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the number of digits to keep when
saving data in text format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = save_header_format_string () [Built-in Function]
old_val = save_header_format_string (new_val) [Built-in Function]
save_header_format_string (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the format string used for the comment
line written at the beginning of text-format data files saved by Octave. The format
string is passed to strftime and should begin with the character ‘#’ and contain no
newline characters. If the value of save_header_format_string is the empty string,
the header comment is omitted from text-format data files. The default value is

"# Created by Octave VERSION, %a %b %d %H:%M:%S AY %Z <USERQHOST>"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 733, [save], page 238.

load file [Command]
load options file [Command]|
load options file vl v2 . .. [Command]|
S = load ("options", "file", "vI", "v2" ...) [Command]|
load file options [Command|
load file options vl v2 ... [Command]

Chapter 14: Input and Output 241

S = load ("file", "options", "vI", "v2" ...) [Command|
Load the named variables v1, v2, ..., from the file file. If no variables are specified
then all variables found in the file will be loaded. As with save, the list of variables
to extract can be full names or use a pattern syntax. The format of the file is
automatically detected but may be overridden by supplying the appropriate option.

If load is invoked using the functional form
load ("-optionl", ..., "file", "v1i", ...)

then the options, file, and variable name arguments (v1, ...) must be specified as
character strings.

If a variable that is not marked as global is loaded from a file when a global symbol
with the same name already exists, it is loaded in the global symbol table. Also, if
a variable is marked as global in a file and a local symbol exists, the local symbol is
moved to the global symbol table and given the value from the file.

If invoked with a single output argument, Octave returns data instead of insert-
ing variables in the symbol table. If the data file contains only numbers (TAB- or
space-delimited columns), a matrix of values is returned. Otherwise, load returns a
structure with members corresponding to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats,
and MATLAB’s binary format. If compiled with zlib support, it can also load
gzip-compressed files. It will automatically detect the type of file and do conversion
from different floating point formats (currently only IEEE big and little endian,
though other formats may be added in the future).

Valid options for load are listed in the following table.

-force This option is accepted for backward compatibility but is ignored. Octave
now overwrites variables currently in memory with those of the same name
found in the file.

-ascii Force Octave to assume the file contains columns of numbers in text
format without any header or other information. Data in the file will be
loaded as a single numeric matrix with the name of the variable derived
from the name of the file.

-binary Force Octave to assume the file is in Octave’s binary format.

-hdf5 Force Octave to assume the file is in HDF5 format. (HDF5 is a free,
portable binary format developed by the National Center for Supercom-
puting Applications at the University of Illinois.) Note that Octave can
read HDFH files not created by itself, but may skip some datasets in for-
mats that it cannot support. This format is only available if Octave was
built with a link to the HDF5 libraries.

-import This option is accepted for backward compatibility but is ignored. Octave
can now support multi-dimensional HDF data and automatically modifies
variable names if they are invalid Octave identifiers.

242 GNU Octave

-mat
-mat-binary

-v7 Force Octave to assume the file is in MATLAB’s version 6 or 7 binary
format.

-mat4-binary

-4

-v4

-V4 Force Octave to assume the file is in the binary format written by MATLAB
version 4.

-text Force Octave to assume the file is in Octave’s text format.

See also: [save], page 238, [dlmwrite|, page 242, [csvwrite], page 244, [fwrite],
page 263.

str = fileread (filename) [Function File]
Read the contents of filename and return it as a string.

See also: [fread], page 261, [textread], page 244, [sscanf], page 258.

native_float_format () [Built-in Function]
Return the native floating point format as a string

It is possible to write data to a file in a similar way to the disp function for writing data
to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");
fdisp (fid, "3/8 is ");

fdisp (fid, 3/8);

fclose (fid);

See Section 14.2.1 [Opening and Closing Files|, page 248, for details on how to use fopen
and fclose.
fdisp (fid, x) [Built-in Function]
Display the value of x on the stream fid. For example:
fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

- the value of pi is:
- 3.1416

Note that the output from fdisp always ends with a newline.

See also: [disp|, page 231.

Octave can also read and write matrices text files such as comma separated lists.

Chapter 14: Input and Output 243

dlmwrite (file, M)
dlmwrite (file, M, delim, r, c)

dlmwrite (file, M, "-append", ...)

Function File
Function File

Function File
Function File

[]
[]
dlmwrite (file, M, key, val ...) [Function File]
[]
[]

dlmwrite (fid, ...)

data
data
data
data
data

Write the matrix M to the named file using delimiters.
file should be a file name or writable file ID given by fopen.
The parameter delim specifies the delimiter to use to separate values on a row.

The value of r specifies the number of delimiter-only lines to add to the start of the
file.

The value of ¢ specifies the number of delimiters to prepend to each line of data.

If the argument "-append" is given, append to the end of file.

In addition, the following keyword value pairs may appear at the end of the argument
list:

"append" Either "on" or "off". See "-append" above.

"delimiter"
See delim above.

"newline"
The character(s) to use to separate each row. Three special cases exist for
this option. "unix" is changed into "\n", "pc" is changed into "\r\n",
and "mac" is changed into "\r". Other values for this option are kept as
is.

"roffset"
See r above.

"coffset"
See ¢ above.

"precision"

The precision to use when writing the file. It can either be a format string
(as used by fprintf) or a number of significant digits.

dlmwrite ("file.csv", reshape (1:16, 4, 4));

dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\\n")
See also: [dlmread], page 243, [csvread], page 244, [csvwrite], page 244.
dlmread (file)

]
dlmread (file, sep) Built-in Function]
dlmread (file, sep, r0, c0) Built-in Function]
]
]

Built-in Function

dlmread (file, sep, range) Built-in Function
dlmread (..., "emptyvalue", EMPTYVAL) [Built-in Function
Read the matrix data from a text file. If not defined the separator between fields is
determined from the file itself. Otherwise the separation character is defined by sep.

Given two scalar arguments r0 and c0, these define the starting row and column of
the data to be read. These values are indexed from zero, such that the first row
corresponds to an index of zero.

244 GNU Octave

The range parameter may be a 4-element vector containing the upper left and lower
right corner [RO,CO,R1,C1] where the lowest index value is zero. Alternatively, a
spreadsheet style range such as "A2..Q15" or "T1:AA5" can be used. The lowest
alphabetical index ’A’ refers to the first column. The lowest row index is 1.

file should be a file name or file id given by fopen. In the latter case, the file is read
until end of file is reached.

The "emptyvalue" option may be used to specify the value used to fill empty fields.
The default is zero.

See also: [csvread], page 244, [textscan], page 245, [textread|, page 244, [dlmwrite],

page 242.
csvwrite (filename, x) [Function File]
csvwrite (filename, x, d1m_opts) [Function File]

Write the matrix x to the file filename in comma-separated-value format.
This function is equivalent to

dlmwrite (filename, x, ",", ...)
See also: [csvread|, page 244, [dlmwrite], page 242, [dlmread], page 243.
x = csvread (filename) [Function File]

x = csvread (filename, dlm_opts) [Function File]
Read the comma-separated-value file filename into the matrix x.

This function is equivalent to

x = dlmread (filename, "," , ...)

See also: [csvwrite], page 244, [dlmread|, page 243, [dlmwrite], page 242.

Formatted data from can be read from, or written to, text files as well.

[a, ...] = textread (filename) [Function File]
[a, ...] = textread (filename, format) [Function File]
[a, ...] = textread (filename, format, n) [Function File]
[a, ...] = textread (filename, format, propl, valuel, ...) [Function File]
[a,] = textread (filename, format, n, propl, valuel, ...) [Function File]

Read data from a text file.

The file filename is read and parsed according to format. The function behaves like
strread except it works by parsing a file instead of a string. See the documentation
of strread for details.

In addition to the options supported by strread, this function supports two more:
e "headerlines": The first value number of lines of filename are skipped.
e "endofline": Specify a single character or "\r\n". If no value is given, it will be
inferred from the file. If set to "" (empty string) EOLSs are ignored as delimiters.
The optional input n specifies the number of data lines to read; in this sense it differs
slightly from the format repeat count in strread.

If the format string is empty (not: omitted) and the file contains only numeric data
(excluding headerlines), textread will return a rectangular matrix with the number

Chapter 14: Input and Output 245

of columns matching the number of numeric fields on the first data line of the file.
Empty fields are returned as zero values.

See also: [strread], page 83, [load], page 240, [dlmread], page 243, [fscanf], page 257,
[textscan|, page 245.

C = textscan (fid, format) [Function File]
C = textscan (fid, format, n) [Function File]
C = textscan (fid, format, param, value, ...) [Function File]
C = textscan (fid, format, n, param, value, ...) [Function File]
C = textscan (str, ...) [Function File]
[C, position] = extscan (fid, ...) [Function File]

Read data from a text file or string.

The string str or file associated with fid is read from and parsed according to format.
The function behaves like strread except it can also read from file instead of a string.
See the documentation of strread for details.

In addition to the options supported by strread, this function supports a few more:

e "collectoutput": A value of 1 or true instructs textscan to concatenate con-
secutive columns of the same class in the output cell array. A value of 0 or false
(default) leaves output in distinct columns.

e '"endofline": Specify "\r", "\n" or "\r\n" (for CR, LF, or CRLF). If no value
is given, it will be inferred from the file. If set to "" (empty string) EOLs are
ignored as delimiters and added to whitespace.

e "headerlines": The first value number of lines of fid are skipped.

e "returnonerror": If set to numerical 1 or true (default), return normally when
read errors have been encountered. If set to 0 or false, return an error and no
data. As the string or file is read by columns rather than by rows, and because
textscan is fairly forgiving as regards read errors, setting this option may have
little or no actual effect.

When reading from a character string, optional input argument n specifies the number
of times format should be used (i.e., to limit the amount of data read). When reading
from file, n specifies the number of data lines to read; in this sense it differs slightly
from the format repeat count in strread.

The output C is a cell array whose second dimension is determined by the number of
format specifiers.

The second output, position, provides the position, in characters, from the beginning
of the file.

If the format string is empty (not: omitted) and the file contains only numeric data
(excluding headerlines), textscan will return data in a number of columns matching
the number of numeric fields on the first data line of the file.

See also: [dlmread], page 243, [fscanf], page 257, [load|, page 240, [strread], page 83,
[textread], page 244.

The importdata function has the ability to work with a wide variety of data.

246 GNU Octave

A = importdata (fname) [Function File]
A = importdata (fname, delimiter) [Function File]
A = importdata (fname, delimiter, header_rows) [Function File]
[A, delimiter] = importdata (...) [Function File]
[A, delimiter, header_rows] = importdata (...) [Function File]

Import data from the file fname.
Input parameters:
e fname The name of the file containing data.

e delimiter The character separating columns of data. Use \t for tab. (Only valid
for ASCII files)

e header_rows The number of header rows before the data begins. (Only valid for
ASCII files)
Different file types are supported:
e ASCII table

Import ASCII table using the specified number of header rows and the specified
delimiter.

e Image file

e MATLAB file

e Spreadsheet files (depending on external software)
o WAV file

See also: [textscan|, page 245, [dlmread]|, page 243, [csvread|, page 244, [load],
page 240.

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpectedly it will by default save the variables avail-
able in the workspace to a file in the current directory. By default this file is named
‘octave-workspace’ and can be loaded into memory with the load command. While the
default behavior most often is reasonable it can be changed through the following functions.

val = crash_dumps_octave_core () [Built-in Function]
old_val = crash_dumps_octave_core (new_val) [Built-in Function]
crash_dumps_octave_core (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file ‘octave-workspace’ if it crashes or receives a hangup, terminate
or similar signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [octave_core_file_limit|, page 247, [octave_core_file_name], page 247,

[octave_core_file_options|, page 247.

val = sighup_dumps_octave_core () [Built-in Function]
old_val = sighup_dumps_octave_core (new_val) [Built-in Function]

Chapter 14: Input and Output 247

sighup_dumps_octave_core (new_val, "local") [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file ‘octave-workspace’ if it receives a hangup signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = sigterm_dumps_octave_core () [Built-in Function]
old_val = sigterm_dumps_octave_core (new_val) [Built-in Function]
sigterm_dumps_octave_core (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file ‘octave-workspace’ if it receives a terminate signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = octave_core_file_options () [Built-in Function]
old_val = octave_core_file_options (new_val) [Built-in Function]
octave_core_file_options (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the options used for saving the
workspace data if Octave aborts. The value of octave_core_file_options should
follow the same format as the options for the save function. The default value is
Octave’s binary format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash_dumps_octave_core|, page 246, [octave_core_file_name|, page 247,
[octave_core_file_limit], page 247.

val = octave_core_file_limit () [Built-in Function]
old_val = octave_core_file_limit (new_val) [Built-in Function]
octave_core_file_limit (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the maximum amount of memory (in
kilobytes) of the top-level workspace that Octave will attempt to save when writing
data to the crash dump file (the name of the file is specified by octave_core_file_name).
If octave_core_file_options flags specify a binary format, then octave_core_file_limit
will be approximately the maximum size of the file. If a text file format is used, then
the file could be much larger than the limit. The default value is -1 (unlimited)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash_dumps_octave_core|, page 246, [octave_core_file_name|, page 247,

[octave_core_file_options|, page 247.

val = octave_core_file_name () [Built-in Function]
old_val = octave_core_file_name (new_val) [Built-in Function]

248 GNU Octave

octave_core_file_name (new_val, "local") [Built-in Function]
Query or set the internal variable that specifies the name of the file used for saving
data from the top-level workspace if Octave aborts. The default value is "octave-
workspace"
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash_dumps_octave_core|, page 246, [octave_core_file_name|, page 247,
[octave_core_file_options|, page 247.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C
programming language’s standard I/O library. The argument lists for some of the input
functions are slightly different, however, because Octave has no way of passing arguments
by reference.

In the following, file refers to a file name and fid refers to an integer file number, as
returned by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

stdin () [Built-in Function]
Return the numeric value corresponding to the standard input stream.

When Octave is used interactively, stdin is filtered through the command line editing
functions.

See also: [stdout], page 248, [stderr], page 248.

stdout () [Built-in Function]
Return the numeric value corresponding to the standard output stream.

Data written to the standard output is normally filtered through the pager.
See also: [stdin], page 248, [stderr], page 248.

stderr () [Built-in Function]
Return the numeric value corresponding to the standard error stream.

Even if paging is turned on, the standard error is not sent to the pager. It is useful
for error messages and prompts.

See also: [stdin|, page 248, [stdout], page 248.

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing
to a file. The fopen function returns a pointer to an open file that is ready to be read or
written. Once all data has been read from or written to the opened file it should be closed.
The fclose function does this. The following code illustrates the basic pattern for writing
to a file, but a very similar pattern is used when reading a file.

Chapter 14: Input and Output 249

fid
fid
fid

[fid, msg] = fopen (...)
fid_list = fopen ("all")
[file, mode, arch] = fopen (fid)

filename = "myfile.txt";

fid = fopen (filename, "w");
Do the actual I/0 here...
fclose (fid);

= fopen (name) [Built-in Function]
fopen (name, mode) [Built-in Function]
fopen (name, mode, arch) [Built-in Function]
[]
[]
[]

Built-in Function
Built-in Function
Built-in Function
The first form of the fopen function opens the named file with the specified mode
(read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE
little endian, etc.), and returns an integer value that may be used to refer to the file
later. If an error occurs, fid is set to —1 and msg contains the corresponding system
error message. The mode is a one or two character string that specifies whether the
file is to be opened for reading, writing, or both.

The second form of the fopen function returns a vector of file ids corresponding to
all the currently open files, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns information about the open file given
its file id.

For example,
myfile = fopen ("splat.dat", "r", "ieee-le");
opens the file ‘splat.dat’ for reading. If necessary, binary numeric values will be

read assuming they are stored in IEEE format with the least significant bit first, and
then converted to the native representation.

Opening a file that is already open simply opens it again and returns a separate file
id. It is not an error to open a file several times, though writing to the same file
through several different file ids may produce unexpected results.

The possible values ‘mode’ may have are

‘r’ (default)
Open a file for reading.

‘w Open a file for writing. The previous contents are discarded.

‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.

‘wt’ Open a file for reading or writing. The previous contents are discarded.
‘at’ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in
binary mode. On Windows and Macintosh systems, text mode reading and writing
automatically converts linefeeds to the appropriate line end character for the system
(carriage-return linefeed on Windows, carriage-return on Macintosh). The default
when no mode is specified is binary mode.

250 GNU Octave

Additionally, you may append a "z" to the mode string to open a gzipped file for
reading or writing. For this to be successful, you must also open the file in binary
mode.

The parameter arch is a string specifying the default data format for the file. Valid
values for arch are:

‘native (default)’
The format of the current machine.

‘ieee-be’ IEEE big endian format.
‘deee-1le’ IEEE little endian format.

however, conversions are currently only supported for ‘native’ ‘ieee-be’, and
‘ieee-1le’ formats.

See also: [fclose], page 250, [fgets], page 251, [fgetl], page 251, [fscanf], page 257,
[fread], page 261, [fputs], page 250, [fdisp|, page 242, [fprintf], page 252, [fwrite],
page 263, [fskipl], page 252, [fseek]|, page 266, [frewind]|, page 267, [ftell], page 266,
[feof], page 265, [ferror|, page 265, [fclear], page 266, [fush]|, page 236, [freport],

page 266.
fclose (fid) [Built-in Function]
fclose ("all") [Built-in Function]
status = fclose ("all") [Built-in Function]

Close the file specified by the file descriptor fid.

If successful, fclose returns 0, otherwise, it returns -1. The second form of the
fclose call closes all open files except stdout, stderr, and stdin.

Programming Note: When using "all" the file descriptors associated with gnuplot

will also be closed. This will prevent further plotting with gnuplot until Octave is
closed and restarted.

See also: [fopen], page 249, [fflush], page 236, [freport], page 266.

is_valid_file_id (fid) [Function File]
Return true if fid refers to an open file.

See also: [freport], page 266, [fopen|, page 249.
14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs
function. The following example shows how to write the string ‘Free Software is needed
for Free Science’ to the file ‘free.txt’.

filename = "free.txt";

fid = fopen (filename, "w");

fputs (fid, "Free Software is needed for Free Science");
fclose (fid);

fputs (fid, string) [Built-in Function]
status = fputs (fid, string) [Built-in Function]
Write the string string to the file with file descriptor fid.

Chapter 14: Input and Output 251

The string is written to the file with no additional formatting. Use fdisp instead to
automatically append a newline character appropriate for the local machine.

Return a non-negative number on success or EOF on error.
See also: [fdisp], page 242, [fprintf], page 252, [fwrite]|, page 263, [fopen], page 249.

A function much similar to fputs is available for writing data to the screen. The puts
function works just like fputs except it doesn’t take a file pointer as its input.

puts (string) [Built-in Function]
status = puts (string) [Built-in Function]
Write a string to the standard output with no formatting.
The string is written verbatim to the standard output. Use disp to automatically
append a newline character appropriate for the local machine.

Return a non-negative number on success and EOF on error.

See also: [fputs], page 250, [disp], page 231.
14.2.3 Line-Oriented Input

To read from a file it must be opened for reading using fopen. Then a line can be read
from the file using fgetl as the following code illustrates
fid
txt

fopen ("free.txt");
fgetl (fid)
- Free Software is needed for Free Science
fclose (fid);
This of course assumes that the file ‘free.txt’ exists and contains the line ‘Free Software
is needed for Free Science’.

str = fgetl (fid) [Built-in Function]
str = fgetl (fid, len) [Built-in Function]
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, excluding the possible trailing newline, are returned
as a string.
If len is omitted, fgetl reads until the next newline character.
If there are no more characters to read, fgetl returns —1.

To read a line and return the terminating newline see fgets.

See also: [fgets], page 251, [fscanf], page 257, [fread], page 261, [fopen], page 249.

str = fgets (fid) [Built-in Function]

str = fgets (fid, len) [Built-in Function]
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, including the possible trailing newline, are returned
as a string.

If len is omitted, fgets reads until the next newline character.
If there are no more characters to read, fgets returns —1.
To read a line and discard the terminating newline see fgetl.

See also: [fputs], page 250, [fgetl], page 251, [fscanf], page 257, [fread], page 261,
[fopen], page 249.

252 GNU Octave

nlines = fskipl (fid) [Built-in Function]
nlines = fskipl (fid, count) [Built-in Function]
nlines = fskipl (fid, Inf) [Built-in Function]

Read and skip count lines from the file specified by the file descriptor fid.

fskipl discards characters until an end-of-line is encountered exactly count-times, or
until the end-of-file marker is found.

If count is omitted, it defaults to 1. count may also be Inf, in which case lines are
skipped until the end of the file. This form is suitable for counting the number of
lines in a file.

Returns the number of lines skipped (end-of-line sequences encountered).

See also: [fgetl], page 251, [fgets], page 251, [fscanf], page 257, [fopen], page 249.

14.2.4 Formatted Output
This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modeled after the
C language functions of the same name, but they interpret the format template differently
in order to improve the performance of printing vector and matrix values.

printf (template, ...) [Built-in Function]
Print optional arguments under the control of the template string template to the
stream stdout and return the number of characters printed.

See the Formatted Output section of the GNU Octave manual for a complete descrip-
tion of the syntax of the template string.

See also: [fprintf], page 252, [sprintf], page 252, [scanf], page 258.

fprintf (fid, template, ...) [Built-in Function]
fprintf (template, ...) [Built-in Function]
numbytes = fprintf (...) [Built-in Function]

This function is equivalent to printf, except that the output is written to the file
descriptor fid instead of stdout.

If fid is omitted, the output is written to stdout making the function exactly equiv-
alent to printf.

The optional output returns the number of bytes written to the file.

See also: [fputs|, page 250, [fdisp|, page 242, [fwrite], page 263, [fscanf], page 257,
[printf], page 252, [sprintf], page 252, [fopen], page 249.

sprintf (template, ...) [Built-in Function]
This is like printf, except that the output is returned as a string. Unlike the C
library function, which requires you to provide a suitably sized string as an argument,
Octave’s sprintf function returns the string, automatically sized to hold all of the
items converted.

See also: [printf], page 252, [fprintf], page 252, [sscanf], page 258.

Chapter 14: Input and Output 253

The printf function can be used to print any number of arguments. The template
string argument you supply in a call provides information not only about the number of
additional arguments, but also about their types and what style should be used for printing
them.

Ordinary characters in the template string are simply written to the output stream
as-is, while conversion specifications introduced by a ‘%’ character in the template cause
subsequent arguments to be formatted and written to the output stream. For example,

pct = 37;
filename = "foo.txt";
printf ("Processed %d%% of ’%s’.\nPlease be patient.\n",
pct, filename);
produces output like

Processed 37} of ’foo.txt’.
Please be patient.

This example shows the use of the ‘%4d’ conversion to specify that a scalar argument
should be printed in decimal notation, the ‘/s’ conversion to specify printing of a string
argument, and the ‘%%’ conversion to print a literal ‘%’ character.

There are also conversions for printing an integer argument as an unsigned value in
octal, decimal, or hexadecimal radix (‘%o’, ‘%u’, or ‘%x’, respectively); or as a character
value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’
conversion or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses
either ‘%e’ or ‘%f’ format, depending on what is more appropriate for the magnitude of the
particular number.

You can control formatting more precisely by writing modifiers between the ‘%’ and
the character that indicates which conversion to apply. These slightly alter the ordinary
behavior of the conversion. For example, most conversion specifications permit you to
specify a minimum field width and a flag indicating whether you want the result left- or
right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary de-
pending on the particular conversion. They’re all described in more detail in the following
sections.

14.2.5 Output Conversion for Matrices

When given a matrix value, Octave’s formatted output functions cycle through the format
template until all the values in the matrix have been printed. For example:

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

-+ 1.00 5.00e-01 0.3333
- 0.50 3.33e-01 0.25
-+ 0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output functions do not
return to the beginning of the format template when moving on from one value to the next.
This can lead to confusing output if the number of elements in the matrices are not exact
multiples of the number of conversions in the format template. For example:

254 GNU Octave

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 41);

-4+ 1.00 2.00e+00 3
- 4.00

If this is not what you want, use a series of calls instead of just one.

14.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can
appear in a printf template string.

Characters in the template string that are not part of a conversion specification are
printed as-is to the output stream.

The conversion specifications in a printf template string have the general form:
% flags width [. precision | type conversion

For example, in the conversion specifier ‘%-10.81d’, the ‘=’ is a flag, ‘10’ specifies the field
width, the precision is ‘8’, the letter ‘1’ is a type modifier, and ‘d’ specifies the conversion
style. (This particular type specifier says to print a numeric argument in decimal notation,
with a minimum of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character followed
in sequence by:

e Zero or more flag characters that modify the normal behavior of the conversion speci-
fication.

e An optional decimal integer specifying the minimum field width. If the normal conver-
sion produces fewer characters than this, the field is padded with spaces to the specified
width. This is a minimum value; if the normal conversion produces more characters
than this, the field is not truncated. Normally, the output is right-justified within the
field.

You can also specify a field width of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the field width. The
value is rounded to the nearest integer. If the value is negative, this means to set the
‘= flag (see below) and to use the absolute value as the field width.

e An optional precision to specify the number of digits to be written for the numeric
conversions. If the precision is specified, it consists of a period (‘.”) followed optionally
by a decimal integer (which defaults to zero if omitted).

You can also specify a precision of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the precision. The value
must be an integer, and is ignored if it is negative.

e An optional type modifier character. This character is ignored by Octave’s printf
function, but is recognized to provide compatibility with the C language printf.

e A character that specifies the conversion to be applied.
The exact options that are permitted and how they are interpreted vary between the

different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they use.

Chapter 14: Input and Output 255

14.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’, ‘%1’ Print an integer as a signed decimal number. See Section 14.2.8 [Integer Con-
versions|, page 256, for details. ‘%d’ and ‘%i’ are synonymous for output, but are
different when used with scanf for input (see Section 14.2.13 [Table of Input
Conversions|, page 259).

‘%o’ Print an integer as an unsigned octal number. See Section 14.2.8 [Integer Con-
versions|, page 256, for details.

S’ Print an integer as an unsigned decimal number. See Section 14.2.8 [Integer
Conversions|, page 256, for details.

“%x’, ‘%X’ Print an integer as an unsigned hexadecimal number. ‘%x’ uses lowercase letters
and ‘%X’ uses uppercase. See Section 14.2.8 [Integer Conversions|, page 256, for
details.

‘%t Print a floating-point number in normal (fixed-point) notation. See
Section 14.2.9 [Floating-Point Conversions], page 256, for details.

‘%he’, ‘WE’> Print a floating-point number in exponential notation. ‘%e’ uses lowercase
letters and ‘%E’ uses uppercase. See Section 14.2.9 [Floating-Point Conversions],
page 256, for details.

‘%g’, ‘%G’ Print a floating-point number in either normal (fixed-point) or exponential
notation, whichever is more appropriate for its magnitude. ‘%g’ uses lowercase
letters and ‘%G’ uses uppercase. See Section 14.2.9 [Floating-Point Conversions],
page 256, for details.

“he’ Print a single character. See Section 14.2.10 [Other Output Conversions],
page 257.

“hs’ Print a string. See Section 14.2.10 [Other Output Conversions|, page 257.

YA Print a literal ‘%’ character. See Section 14.2.10 [Other Output Conversions],
page 257.

If the syntax of a conversion specification is invalid, unpredictable things will happen, so
don’t do this. In particular, MATLAB allows a bare percentage sign ‘%’ with no subsequent
conversion character. Octave will emit an error and stop if it sees such code. When the
string variable to be processed cannot be guaranteed to be free of potential format codes it
is better to use the two argument form of any of the printf functions and set the format
string to %s. Alternatively, for code which is not required to be backwards-compatible with
MATLAB the Octave function puts or disp can be used.

printf (strvar); # Unsafe if strvar contains format codes
printf ("Ys", strvar); # Safe
puts (strvar); # Safe

If there aren’t enough function arguments provided to supply values for all the conversion
specifications in the template string, or if the arguments are not of the correct types, the
results are unpredictable. If you supply more arguments than conversion specifications, the
extra argument values are simply ignored; this is sometimes useful.

256 GNU Octave

14.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%o’, ‘%u’, ‘%x’, and ‘%X’ conversion
)) b bl)
specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%i’ conversion specifications both print an numeric argument as a signed
decimal number; while ‘%o0’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal,
or hexadecimal number (respectively). The ‘%X’ conversion specification is just like ‘%x’
except that it uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:
Left-justify the result in the field (instead of the normal right-justification).
4 For the signed ‘%d’ and ‘%i’ conversions, print a plus sign if the value is positive.

For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus
or minus sign, prefix it with a space character instead. Since the ‘+’ flag ensures
that the result includes a sign, this flag is ignored if you supply both of them.

‘# For the ‘%0’ conversion, this forces the leading digit to be ‘0’, as if by increasing
the precision. For ‘%%’ or ‘%X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to
the result. This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any
indication of sign or base. This flag is ignored if the ‘-’ flag is also specified, or
if a precision is specified.

If a precision is supplied, it specifies the minimum number of digits to appear; leading
zeros are produced if necessary. If you don’t specify a precision, the number is printed with
as many digits as it needs. If you convert a value of zero with an explicit precision of zero,
then no characters at all are produced.

14.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’,
‘%he’, “hE’, ‘hg’, and ‘%G’ conversions.

The ‘%f’ conversion prints its argument in fixed-point notation, producing output of the
form [-]ddd.ddd, where the number of digits following the decimal point is controlled by
the precision you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of
the form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is
controlled by the precision. The exponent always contains at least two digits. The ‘%E’
conversion is similar but the exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘4E’ (respectively)
if the exponent would be less than -4 or greater than or equal to the precision; otherwise
they use the ‘%f’ style. Trailing zeros are removed from the fractional portion of the result
and a decimal-point character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:
=’ Left-justify the result in the field. Normally the result is right-justified.

+ Always include a plus or minus sign in the result.

Chapter 14: Input and Output 257

If the result doesn’t start with a plus or minus sign, prefix it with a space
instead. Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if you supply both of them.

‘# Specifies that the result should always include a decimal point, even if no digits
follow it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after
the decimal point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign.
This flag is ignored if the ‘-’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’,
‘he’, and ‘%4E’ conversions. For these conversions, the default precision is 6. If the precision
is explicitly 0, this suppresses the decimal point character entirely. For the ‘%g’ and ‘%G’
conversions, the precision specifies how many significant digits to print. Significant digits
are the first digit before the decimal point, and all the digits after it. If the precision is 0
or not specified for ‘%g’ or ‘%G’, it is treated like a value of 1. If the value being printed
cannot be expressed precisely in the specified number of digits, the value is rounded to the
nearest number that fits.

14.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

The ‘%c’ conversion prints a single character. The ‘=’ flag can be used to specify left-
justification in the field, but no other flags are defined, and no precision or type modifier
can be given. For example:

printf ("%C%C%C%C%C", "h", ||en, "1", "1", "O");
prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be a string. A
precision can be specified to indicate the maximum number of characters to write; otherwise
characters in the string up to but not including the terminating null character are written
to the output stream. The ‘=’ flag can be used to specify left-justification in the field, but
no other flags or type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’ (note the leading and trailing spaces).

14.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input. There
are two forms of each of these functions. One can be used to extract vectors of data from
a file, and the other is more ‘C-like’.

[val, count, errmsgl = fscanf (fid, template, size) [Built-in Function]

[vi, v2, ..., count, errmsg] = fscanf (fid, template, [Built-in Function]
"C")

In the first form, read from fid according to template, returning the result in the
matrix val.

The optional argument size specifies the amount of data to read and may be one of

Inf Read as much as possible, returning a column vector.

258 GNU Octave

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

A string is returned if template specifies only character conversions.
The number of items successfully read is returned in count.

If an error occurs, errmsg contains a system-dependent error message.

In the second form, read from fid according to template, with each conversion specifier
in template corresponding to a single scalar return value. This form is more “C-like”,
and also compatible with previous versions of Octave. The number of successful
conversions is returned in count

See the Formatted Input section of the GNU Octave manual for a complete description
of the syntax of the template string.

See also: [fgets], page 251, [fgetl], page 251, [fread], page 261, [scanf], page 258,
[sscanf], page 258, [fopen], page 249.

[val, count, errmsg] = scanf (template, size) [Built-in Function]
[vi, v2, ..., count, errmsgl]] = scanf (template, "C") [Built-in Function]
This is equivalent to calling fscanf with fid = stdin.

It is currently not useful to call scanf in interactive programs.

See also: [fscanf], page 257, [sscanf], page 258, [printf], page 252.

[val, count, errmsg, pos] = sscanf (string, template, [Built-in Function]
size)
[vi, v2, ..., count, errmsg] = sscanf (string, [Built-in Function]
template, "C")
This is like fscanf, except that the characters are taken from the string string instead
of from a stream. Reaching the end of the string is treated as an end-of-file condition.
In addition to the values returned by fscanf, the index of the next character to be
read is returned in pos.

See also: [fscanf], page 257, [scanf], page 258, [sprintf], page 252.

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are
read under the control of a template string. While the syntax of the conversion specifications
in the template is very similar to that for printf, the interpretation of the template is
oriented more towards free-format input and simple pattern matching, rather than fixed-
field formatting. For example, most scanf conversions skip over any amount of “white
space” (including spaces, tabs, and newlines) in the input file, and there is no concept
of precision for the numeric input conversions as there is for the corresponding output

Chapter 14: Input and Output 259

conversions. Ordinarily, non-whitespace characters in the template are expected to match
characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving the first non-
matching character as the next character to be read from the stream, and scanf returns all
the items that were successfully converted.

The formatted input functions are not used as frequently as the formatted output func-
tions. Partly, this is because it takes some care to use them properly. Another reason is
that it is difficult to recover from a matching error.

14.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of whitespace characters
in the input stream to be read and discarded. The whitespace characters that are matched
need not be exactly the same whitespace characters that appear in the template string. For
example, write ¢ , ’ in the template to recognize a comma with optional whitespace before
and after.

Other characters in the template string that are not part of conversion specifications
must match characters in the input stream exactly; if this is not the case, a matching
failure occurs.

The conversion specifications in a scanf template string have the general form:
% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘%’ character fol-
lowed in sequence by:

e An optional flag character ‘*’, which says to ignore the text read for this specification.
When scanf finds a conversion specification that uses this flag, it reads input as directed
by the rest of the conversion specification, but it discards this input, does not return
any value, and does not increment the count of successful assignments.

e An optional decimal integer that specifies the maximum field width. Reading of char-
acters from the input stream stops either when this maximum is reached or when a
non-matching character is found, whichever happens first. Most conversions discard
initial whitespace characters, and these discarded characters don’t count towards the
maximum field width. Conversions that do not discard initial whitespace are explicitly
documented.

e An optional type modifier character. This character is ignored by Octave’s scanf
function, but is recognized to provide compatibility with the C language scanf.

e A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they allow.

14.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

260 GNU Octave

‘hd’ Matches an optionally signed integer written in decimal. See Section 14.2.14
[Numeric Input Conversions|, page 260.

‘i’ Matches an optionally signed integer in any of the formats that the C language
defines for specifying an integer constant. See Section 14.2.14 [Numeric Input
Conversions|, page 260.

‘%o’ Matches an unsigned integer written in octal radix. See Section 14.2.14 [Nu-
meric Input Conversions]|, page 260.

hu’ Matches an unsigned integer written in decimal radix. See Section 14.2.14
[Numeric Input Conversions|, page 260.

%%’ KX’ Matches an unsigned integer written in hexadecimal radix. See Section 14.2.14
[Numeric Input Conversions|, page 260.

L%e77 ‘%f’) L%g7’ ‘%E’, L%G7
Matches an optionally signed floating-point number. See Section 14.2.14 [Nu-
meric Input Conversions|, page 260.

hs’ Matches a string containing only non-whitespace characters. See Section 14.2.15
[String Input Conversions], page 261.

“he’ Matches a string of one or more characters; the number of characters read is con-
trolled by the maximum field width given for the conversion. See Section 14.2.15
[String Input Conversions|, page 261.

s This matches a literal ‘4’ character in the input stream. No corresponding
argument is used.

If the syntax of a conversion specification is invalid, the behavior is undefined. If there
aren’t enough function arguments provided to supply addresses for all the conversion spec-
ifications in the template strings that perform assignments, or if the arguments are not of
the correct types, the behavior is also undefined. On the other hand, extra arguments are
simply ignored.

14.2.14 Numeric Input Conversions
This section describes the scanf conversions for reading numeric values.

The ‘%d’ conversion matches an optionally signed integer in decimal radix.

The ‘%1’ conversion matches an optionally signed integer in any of the formats that the
C language defines for specifying an integer constant.

For example, any of the strings ‘10°, ‘Oxa’, or ‘012’ could be read in as integers under
the ‘%i’ conversion. Each of these specifies a number with decimal value 10.

The ‘%0o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hex-
adecimal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase
or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’; ‘1’, and ‘L’ modifiers.

Chapter 14: Input and Output 261

14.2.15 String Input Conversions

This section describes the scanf input conversions for reading string and character values:
‘%hs’ and ‘Y%c’.

The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum,
the default is 1. This conversion does not skip over initial whitespace characters. It reads
precisely the next n characters, and fails if it cannot get that many.

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and dis-
cards initial whitespace, but stops when it encounters more whitespace after having read
something.

For example, reading the input:

hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same input with the
conversion ‘%10s’ produces "hello,".

14.2.16 Binary I/0

Octave can read and write binary data using the functions fread and fwrite, which are
patterned after the standard C functions with the same names. They are able to automat-
ically swap the byte order of integer data and convert among the supported floating point
formats as the data are read.

val = fread (fid) Built-in Function

[]
val = fread (fid, size) [Built-in Function]
val = fread (fid, size, precision) [Built-in Function]
val = fread (fid, size, precision, skip) [Built-in Function]
val = fread (fid, size, precision, skip, arch) [Built-in Function]

[]

[val, count] = fread (...)
Read binary data from the file specified by the file descriptor fid.

The optional argument size specifies the amount of data to read and may be one of

Built-in Function

Inf Read as much as possible, returning a column vector.
nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

The optional argument precision is a string specifying the type of data to read and
may be one of

"schar"
"signed char"
Signed character.

262

"uchar"
"unsigned char"
Unsigned character.

"int8"
"integerx1"

8-bit signed integer.
"int1l6"
"integerx2"

16-bit signed integer.
"int32"
"integerx4"

32-bit signed integer.
"int64"
"integer*8"

64-bit signed integer.
"uint8" 8-bit unsigned integer.

"uint16" 16-bit unsigned integer.
"uint32" 32-bit unsigned integer.
"uint64" 64-bit unsigned integer.

"single"
"float32"
"real*4" 32-bit floating point number.

"double"
"float64"
"real*8" 64-bit floating point number.

"Char“
"charx1" Single character.

"short" Short integer (size is platform dependent).

"int" Integer (size is platform dependent).
"long" Long integer (size is platform dependent).
"ushort"

"unsigned short"

Unsigned short integer (size is platform dependent).

"uint"
"unsigned int"
Unsigned integer (size is platform dependent).

llulongll
"unsigned long"
Unsigned long integer (size is platform dependent).

GNU Octave

Chapter 14: Input and Output 263

"float" Single precision floating point number (size is platform dependent).

The default precision is "uchar".

The precision argument may also specify an optional repeat count. For example,
‘32*single’ causes fread to read a block of 32 single precision floating point numbers.
Reading in blocks is useful in combination with the skip argument.

The precision argument may also specify a type conversion. For example,
‘int16=>int32’ causes fread to read 16-bit integer values and return an array of
32-bit integer values. By default, fread returns a double precision array. The special
form ‘*TYPE’ is shorthand for ‘TYPE=>TYPE’.

The conversion and repeat counts may be combined. For example, the specification
‘32*single=>single’ causes fread to read blocks of single precision floating point
values and return an array of single precision values instead of the default array of
double precision values.

The optional argument skip specifies the number of bytes to skip after each element
(or block of elements) is read. If it is not specified, a value of 0 is assumed. If the
final block read is not complete, the final skip is omitted. For example,

fread (f, 10, "3*single=>single", 8)

will omit the final 8-byte skip because the last read will not be a complete block of 3
values.

The optional argument arch is a string specifying the data format for the file. Valid
values are

"native" The format of the current machine.

"jeee-be"
IEEE big endian.

"ieee-1le"
IEEE little endian.

The output argument val contains the data read from the file. The optional return
value count contains the number of elements read.

See also: [fwrite], page 263, [fgets], page 251, [fgetl], page 251, [fscanf], page 257,
[fopen], page 249.

fwrite (fid, data) [Built-in Function]
fwrite (fid, data, precision) [Built-in Function]
fwrite (fid, data, precision, skip) [Built-in Function]
fwrite (fid, data, precision, skip, arch) [Built-in Function]
count = fwrite (...) [Built-in Function]
Write data in binary form to the file specified by the file descriptor fid, returning the
number of values count successfully written to the file.

The argument data is a matrix of values that are to be written to the file. The values
are extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are interpreted
as described for fread.

264 GNU Octave

The behavior of furite is undefined if the values in data are too large to fit in the
specified precision.

See also: [fread], page 261, [fputs|, page 250, [fprintf], page 252, [fopen], page 249.

14.2.17 Temporary Files

Sometimes one needs to write data to a file that is only temporary. This is most commonly
used when an external program launched from within Octave needs to access data. When
Octave exits all temporary files will be deleted, so this step need not be executed manually.

[fid, name, msg] = mkstemp ("template") [Built-in Function]

[fid, name, msg] = mkstemp ("template", delete) [Built-in Function]
Return the file descriptor fid corresponding to a new temporary file with a unique
name created from template.

The last six characters of template must be "XXXXXX" and these are replaced with a
string that makes the filename unique. The file is then created with mode read/write
and permissions that are system dependent (on GNU /Linux systems, the permissions
will be 0600 for versions of glibc 2.0.7 and later). The file is opened in binary mode
and with the 0_EXCL flag.

If the optional argument delete is supplied and is true, the file will be deleted auto-
matically when Octave exits.

If successful, fid is a valid file ID, name is the name of the file, and msg is an empty
string. Otherwise, fid is -1, name is empty, and msg contains a system-dependent
€rTor message.

See also: [tempname], page 264, [tempdir]|, page 265, [P_tmpdir], page 265, [tmpfile],
page 264, [fopen], page 249.

[fid, msg] = tmpfile () [Built-in Function]
Return the file ID corresponding to a new temporary file with a unique name.
The file is opened in binary read/write ("w+b") mode and will be deleted automatically
when it is closed or when Octave exits.
If successful, fid is a valid file ID and msg is an empty string. Otherwise, fid is -1
and msg contains a system-dependent error message.

See also: [tempname|, page 264, [mkstemp], page 264, [tempdir], page 265,
[P_tmpdir], page 265.

fname = tempname () [Built-in Function]
fname = tempname (dir) [Built-in Function]
fname = tempname (dir, prefix) [Built-in Function]

Return a unique temporary file name as a string.

If prefix is omitted, a value of "oct-" is used. If dir is also omitted, the default
directory for temporary files (P_tmpdir) is used. If dir is provided, it must exist,
otherwise the default directory for temporary files is used.

Programming Note: Because the named file is not opened by tempname, it is possible,

though relatively unlikely, that it will not be available by the time your program
attempts to open it. If this is a concern, see tmpfile.

Chapter 14: Input and Output 265

See also: [mkstemp|, page 264, [tempdir|, page 265, [P_tmpdir], page 265, [tmpfile],
page 264.

dir = tempdir () [Function File]
Return the name of the host system’s directory for temporary files.

The directory name is taken first from the environment variable TMPDIR. If that does
not exist the system default returned by P_tmpdir is used.

See also: [P_tmpdir], page 265, [tempname], page 264, [mkstemp], page 264, [tmpfile],
page 264.

P_tmpdir () [Built-in Function]
Return the name of the host system’s default directory for temporary files.
Programming Note: The value returned by P_tmpdir is always the default location.

This value may not agree with that returned from tempdir if the user has overriden
the default with the TMPDIR environment variable.

See also: [tempdir|, page 265, [tempname]|, page 264, [mkstemp], page 264, [tmpfile],
page 264.

14.2.18 End of File and Errors

Once a file has been opened its status can be acquired. As an example the feof functions
determines if the end of the file has been reached. This can be very useful when reading
small parts of a file at a time. The following example shows how to read one line at a time
from a file until the end has been reached.

filename = "myfile.txt";

fid = fopen (filename, "r");

while (! feof (fid))
text_line = fgetl (fid);

endwhile

fclose (fid);

Note that in some situations it is more efficient to read the entire contents of a file and then
process it, than it is to read it line by line. This has the potential advantage of removing
the loop in the above code.

status = feof (fid) [Built-in Function]
Return 1 if an end-of-file condition has been encountered for the file specified by file
descriptor fid and 0 otherwise.

Note that feof will only return 1 if the end of the file has already been encountered,
not if the next read operation will result in an end-of-file condition.

See also: [fread], page 261, [frewind], page 267, [fseek], page 266, [fclear], page 266,
[fopen], page 249.

msg = ferror (fid) [Built-in Function]

[msg, err] = ferror (fid) [Built-in Function]

[dots] = ferror (fid, "clear") [Built-in Function]
Query the error status of the stream specified by file descriptor fid

266 GNU Octave

If an error condition exists then return a string msg describing the error. Otherwise,
return an empty string "".

The optional second output is a numeric indication of the error status. err is 1 if an
error condition has been encountered and 0 otherwise.

Note that ferror indicates if an error has already occurred, not whether the next
operation will result in an error condition.

The second input "clear" is optional. If supplied, the error state on the stream will
be cleared.

See also: [fclear|, page 266, [fopen], page 249.

fclear (fid) [Built-in Function]
Clear the stream state for the file specified by the file descriptor fid.

See also: [ferror], page 265, [fopen], page 249.
freport () [Built-in Function]

Print a list of which files have been opened, and whether they are open for reading,
writing, or both. For example:

freport ()
- number mode arch name
_| ______ —_———— —_———— —_————
= 0 r ieee-le stdin
= 1 w ieee-le stdout
= 2 W ieee-le stderr
- 3 T ieee-le myfile

See also: [fopen], page 249, [fclose], page 250, [is_valid_file_id], page 250.
14.2.19 File Positioning

Three functions are available for setting and determining the position of the file pointer for

a given file.

pos = ftell (fid) [Built-in Function]
Return the position of the file pointer as the number of characters from the beginning
of the file specified by file descriptor fid.

See also: [fseek], page 266, [frewind], page 267, [feof], page 265, [fopen], page 249.

fseek (fid, offset) [Built-in Function]
fseek (fid, offset, origin) [Built-in Function]
status = fseek (...) [Built-in Function]

Set the file pointer to the location offset within the file fid.

The pointer is positioned offset characters from the origin, which may be one of the
predefined variables SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END
(end of file) or strings "cof", "bof" or "eof". If origin is omitted, SEEK_SET is
assumed. offset may be positive, negative, or zero but not all combinations of origin
and offset can be realized.

Chapter 14: Input and Output 267

fseek returns 0 on success and -1 on error.

See also: [fskipl|, page 252, [frewind], page 267, [ftell], page 266, [fopen], page 249.

SEEK_SET () [Built-in Function]
SEEK_CUR () [Built-in Function]
SEEK_END () [Built-in Function]

Return the numerical value to pass to fseek to perform one of the following actions:
SEEK_SET Position file relative to the beginning.

SEEK_CUR Position file relative to the current position.

SEEK_END Position file relative to the end.

See also: [fseek], page 266.

frewind (fid) [Built-in Function]
status = frewind (fid) [Built-in Function]
Move the file pointer to the beginning of the file specified by file descriptor fid.

frewind returns O for success, and -1 if an error is encountered. It is equivalent to
fseek (fid, 0, SEEK_SET).

See also: [fseek], page 266, [ftell], page 266, [fopen], page 249.

The following example stores the current file position in the variable marker, moves the
pointer to the beginning of the file, reads four characters, and then returns to the original
position.

marker = ftell (myfile);

frewind (myfile);

fourch = fgets (myfile, 4);

fseek (myfile, marker, SEEK_SET);

Chapter 15: Plotting 269

15 Plotting

15.1 Introduction to Plotting

Earlier versions of Octave provided plotting through the use of gnuplot. This capability is
still available. But, a newer plotting capability is provided by access to OpenGL. Which
plotting system is used is controlled by the graphics_toolkit function. See Section 15.4.7
[Graphics Toolkits], page 397.

The function call graphics_toolkit ("f1tk") selects the FLTK/OpenGL system, and
graphics_toolkit ("gnuplot") selects the gnuplot system. The two systems may be used
selectively through the use of the graphics_toolkit property of the graphics handle for
each figure. This is explained in Section 15.3 [Graphics Data Structures|, page 350. Caution:
The FLTK toolkit uses single precision variables internally which limits the maximum value
that can be displayed to approximately 10%%. If your data contains larger values you must
use the gnuplot toolkit which supports values up to 103%.

15.2 High-Level Plotting

Octave provides simple means to create many different types of two- and three-dimensional
plots using high-level functions.

If you need more detailed control, see Section 15.3 [Graphics Data Structures], page 350
and Section 15.4 [Advanced Plotting], page 382.

15.2.1 Two-Dimensional Plots

The plot function allows you to create simple x-y plots with linear axes. For example,

x = -10:0.1:10;
plot (x, sin (x));

displays a sine wave shown in Figure 15.1. On most systems, this command will open a
separate plot window to display the graph.

270

GNU Octave

Simple 2-D Plot
1 T T

sin (x)

Figure 15.1: Simple Two-Dimensional Plot.

plot
plot
plot
plot
plot
plot

h = plot (...)

(Function File
(x,y) Function File
(x, y, fmt) Function File
(
(

y) []
: Foncion P
..., property, value, ...) [Function File]
[|
[]
[]

x1,y1, ..., xn, yn) Function File
(hax, ...) Function File

Function File
Produce 2-D plots.

Many different combinations of arguments are possible. The simplest form is
plot (y)

where the argument is taken as the set of y coordinates and the x coordinates are
taken to be the range 1:numel (y).

If more than one argument is given, they are interpreted as
plot (y, property, value, ...)

or
plot (x, y, property, value, ...)

or
plot (x, y, fmt, ...)

and so on. Any number of argument sets may appear. The x and y values are
interpreted as follows:

e If a single data argument is supplied, it is taken as the set of y coordinates and
the x coordinates are taken to be the indices of the elements, starting with 1.

e If x and y are scalars, a single point is plotted.

e squeeze() is applied to arguments with more than two dimensions, but no more
than two singleton dimensions.

Chapter 15: Plotting 271

e If both arguments are vectors, the elements of y are plotted versus the elements
of x.

e If x is a vector and y is a matrix, then the columns (or rows) of y are plotted
versus x. (using whichever combination matches, with columns tried first.)

e If the x is a matrix and y is a vector, y is plotted versus the columns (or rows)
of x. (using whichever combination matches, with columns tried first.)

e If both arguments are matrices, the columns of y are plotted versus the columns
of x. In this case, both matrices must have the same number of rows and columns
and no attempt is made to transpose the arguments to make the number of rows
match.

Multiple property-value pairs may be specified, but they must appear in pairs.
These arguments are applied to the line objects drawn by plot. Useful properties
to modify are "linestyle", "linewidth", "color", "marker", "markersize",
"markeredgecolor", "markerfacecolor".

The fmt format argument can also be used to control the plot style. The format
is composed of three parts: linestyle, markerstyle, color. When a markerstyle is
specified, but no linestyle, only the markers are plotted. Similarly, if a linestyle is
specified, but no markerstyle, then only lines are drawn. If both are specified then
lines and markers will be plotted. If no fmt and no property /value pairs are given,
then the default plot style is solid lines with no markers and the color determined by
the "colororder" property of the current axes.

Format arguments:

linestyle
= Use solid lines (default).
=7 Use dashed lines.
c Use dotted lines.
= Use dash-dotted lines.
markerstyle
+ crosshair
‘o’ circle
k7 star
© point
‘x’ Cross
‘s’ square
‘&’ diamond
- upward-facing triangle
‘v’ downward-facing triangle
&>’ right-facing triangle
‘< left-facing triangle
‘p’ pentagram
‘n’ hexagram
color
‘K’ blacK

‘r’ Red

272 GNU Octave

‘g’ Green
‘D’ Blue
‘m’ Magenta
‘c’ Cyan
‘W’ White
";key;" Here "key" is the label to use for the plot legend.

The fmt argument may also be used to assign legend keys. To do so, include the
desired label between semicolons after the formatting sequence described above, e.g.,
"+b;Key Title;". Note that the last semicolon is required and Octave will generate
an error if it is left out.

Here are some plot examples:

plot (x, y, "or", x, y2, x, y3, "m", x, y4, "+")
This command will plot y with red circles, y2 with solid lines, y3 with solid magenta
lines, and y4 with points displayed as ‘+’.

plot (b, "x", "markersize", 10)
This command will plot the data in the variable b, with points displayed as ‘*’ and a
marker size of 10.

=0:0.1:6.3;

plot (t, cos(t), "-;cos(t);", t, sin(t), "-b;sin(t);");

This will plot the cosine and sine functions and label them accordingly in the legend.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the created line objects.

To save a plot, in one of several image formats such as PostScript or PNG, use the
print command.

See also: [axis|, page 297, [box]|, page 328, [grid], page 328, [hold], page 336, [legend],
page 325, [title], page 325, [xlabel], page 327, [ylabel], page 327, [xlim], page 298,
[ylim]|, page 298, [ezplot], page 300, [errorbar|, page 286, [fplot], page 299, [line],
page 353, [plot3], page 315, [polar], page 290, [loglog], page 274, [semilogx], page 273,
[semilogy], page 273, [subplot], page 332.

The plotyy function may be used to create a plot with two independent y axes.

plotyy (x1, y1, x2, y2) [Function File]

plotyy (..., fun) [Function File]

plotyy (..., funl, fun2) [Function File]

plotyy (hax) [Function File]

lax, h1, h2] = plotyy (...) [Function File]
Plot two sets of data with independent y-axes and a common x-axis.

The arguments x1 and yl define the arguments for the first plot and x1 and y2 for
the second.

By default the arguments are evaluated with feval (@plot, x, y). However the type
of plot can be modified with the fun argument, in which case the plots are generated

Chapter 15: Plotting 273

by feval (fun, x, y). fun can be a function handle, an inline function, or a string
of a function name.

The function to use for each of the plots can be independently defined with funl and
fun2.

If the first argument hax is an axes handle, then it defines the principal axis in which
to plot the x1 and y1 data.

The return value ax is a vector with the axis handles of the two y-axes. hl and h2
are handles to the objects generated by the plot commands.

x = 0:0.1:2%pi;

yl = sin (x);

y2 = exp (x - 1);

ax = plotyy (x, yl, x - 1, y2, @plot, @semilogy);
xlabel ("X");

ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");

See also: [plot], page 270.

The functions semilogx, semilogy, and loglog are similar to the plot function, but
produce plots in which one or both of the axes use log scales.

Function File
Function File

semilogx (y)
semilogx (x, y)

semilogx (x, y, property, value, ...) Function File
semilogx (x, y, fmt) Function File
semilogx (hax, ...) Function File

]
]
]
]
]
h = semilogx (...) Function File]
Produce a 2-D plot using a logarithmic scale for the x-axis.

See the documentation of plot for a description of the arguments that semilogx will
accept.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 270, [semilogy]|, page 273, [loglog|, page 274.

semilogy (y) [Function File]
semilogy (x, y) [Function File]
semilogy (x, y, property, value, ...) [Function File]
semilogy (x, y, fmt) [Function File]
semilogy (h, ...) [Function File]
h = semilogy (...) [Function File]
Produce a 2-D plot using a logarithmic scale for the y-axis.

See the documentation of plot for a description of the arguments that semilogy will
accept.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

274 GNU Octave

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 270, [semilogx], page 273, [loglog], page 274.

Function File
Function File

loglog (hax, ...)
h = loglog (...)
Produce a 2-D plot using logarithmic scales for both axes.

loglog (y) [Function File]
loglog (x, y) [Function File]
loglog (X y, prop, value, ...) [Function File]
loglog (x, y, fmt) [Function File]
[|
[]

See the documentation of plot for a description of the arguments that loglog will
accept.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.
See also: [plot], page 270, [semilogx], page 273, [semilogy|, page 273.
The functions bar, barh, stairs, and stem are useful for displaying discrete data. For
example,
hist (randn (10000, 1), 30);

produces the histogram of 10,000 normally distributed random numbers shown in
Figure 15.2.

Histogram of 10,000 normally distributed random numbers
1000 T T T 7 T T T

800

600

Count

400

200

Figure 15.2: Histogram.

bar (y) [Function File]
bar (x,) [Function File]
bar (..., w) [Function File]
bar (..., StY 1le) [Function File]
bar (..., prop, val, ...) [Function File]

Chapter 15: Plotting 275

bar (hax, ...) [Function File]
h = bar (..., prop, val, ...) [Function File]
Produce a bar graph from two vectors of X-Y data.
If only one argument is given, y, it is taken as a vector of Y values and the X
coordinates are the range 1:numel (y).
The optional input w controls the width of the bars. A value of 1.0 will cause each
bar to exactly touch any adjacent bars. The default width is 0.8.
If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument which can take the following values:

"grouped" (default)
Side-by-side bars with a gap between bars and centered over the X-
coordinate.

"stacked"
Bars are stacked so that each X value has a single bar composed of mul-
tiple segments.

"hist" Side-by-side bars with no gap between bars and centered over the X-
coordinate.

"histc" Side-by-side bars with no gap between bars and left-aligned to the X-
coordinate.

Optional property/value pairs are passed directly to the underlying patch objects.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a vector of handles to the created "bar series" hggroups
with one handle per column of the variable y. This series makes it possible to change
a common element in one bar series object and have the change reflected in the other
"bar series". For example,

h = bar (rand (5, 10));

set (h(1), "basevalue", 0.5);
changes the position on the base of all of the bar series.
The following example modifies the face and edge colors using property/value pairs.

bar (randn (1, 100), "facecolor", "r", "edgecolor", "b");
The color of the bars is taken from the figure’s colormap, such that

bar (rand (10, 3));

colormap (summer (64));
will change the colors used for the bars. The color of bars can also be set manually
using the "facecolor" property as shown below.

h = bar (rand (10, 3));

set (h(1), "facecolor", "r")

set (h(2), "facecolor", "g")

set (h(3), "facecolor", "b")

See also: [barh], page 276, [hist], page 276, [pie], page 291, [plot], page 270, [patch],
page 353.

276

barh

h = barh (..., prop, val, ...)

hist
hist
hist
hist
hist
hist
[(nn,

GNU Octave

[Function File]
[Function File]
[Function File]
..., style) [Function File]
.., prop, val, ...) [Function File]
(hax, ...) [Function File]
[Function File]
Produce a horizontal bar graph from two vectors of X-Y data.
If only one argument is given, it is taken as a vector of Y values and the X coordinates
are the range 1:numel (y).
The optional input w controls the width of the bars. A value of 1.0 will cause each
bar to exactly touch any adjacent bars. The default width is 0.8.
If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument which can take the following values:

"grouped" (default)
Side-by-side bars with a gap between bars and centered over the Y-

coordinate.

"stacked"
Bars are stacked so that each Y value has a single bar composed of mul-
tiple segments.

"hist" Side-by-side bars with no gap between bars and centered over the Y-

coordinate.

"histc" Side-by-side bars with no gap between bars and left-aligned to the Y-
coordinate.

Optional property /value pairs are passed directly to the underlying patch objects.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created bar series hggroup.
For a description of the use of the bar series, see [bar|, page 274.

See also: [bar], page 274, [hist], page 276, [pie], page 291, [plot], page 270, [patch],
page 353.

[Function File]
[Function File]
[Function File]
¥, X, norm) [Function File]
[Function File]
[Function File]
[Function File]

hax, ...)

xx] = hist (...)
Produce histogram counts or plots.
With one vector input argument, y, plot a histogram of the values with 10 bins. The
range of the histogram bins is determined by the range of the data. With one matrix
input argument, y, plot a histogram where each bin contains a bar per input column.

Chapter 15: Plotting 277

Given a second vector argument, x, use that as the centers of the bins, with the width
of the bins determined from the adjacent values in the vector.

If scalar, the second argument, nbins, defines the number of bins.

If a third argument is provided, the histogram is normalized such that the sum of the
bars is equal to norm.

Extreme values are lumped into the first and last bins.

The histogram’s appearance may be modified by specifying property/value pairs. For
example the face and edge color may be modified.

hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
The histogram’s colors also depend upon the current colormap.

hist (rand (10, 3));
colormap (summer ());

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

With two output arguments, produce the values nn (numbers of elements) and xx
(bin centers) such that bar (xx, nn) will plot the histogram.

See also: [histc], page 595, [bar|, page 274, [pie], page 291, [rose], page 283.

stemleaf (x, caption) [Function File]
stemleaf (x, caption, stem_sz) [Function File]
plotstr = stemleaf (...) [Function File]

Compute and display a stem and leaf plot of the vector x.

The input x should be a vector of integers. Any non-integer values will be converted
to integer by x = fix (x). By default each element of x will be plotted with the last
digit of the element as a leaf value and the remaining digits as the stem. For example,
123 will be plotted with the stem ‘12’ and the leaf ‘3’. The second argument, caption,
should be a character array which provides a description of the data. It is included
as a heading for the output.

The optional input stem_sz sets the width of each stem. The stem width is determined
by 10~ (stem_sz + 1). The default stem width is 10.

The output of stemleaf is composed of two parts: a "Fenced Letter Display," followed
by the stem-and-leaf plot itself. The Fenced Letter Display is described in Exploratory
Data Analysis. Briefly, the entries are as shown:

278 GNU Octave

Fenced Letter Display

#hnx|__________ nx = numel (x)

M% mi | md | mi median index, md median

H% hilhl hul| hs hi lower hinge index, hl,hu hinges,
1 lx(1) x(nx) | hs h_spreadx(1), x(nx) first

and last data wvalue.

______ step |_______ step 1.5*%h_spread
flifl ifh| inner fence, lower and higher
Infl nfh| no.\ of data points within fences
Flofl ofh| outer fence, lower and higher
|nF1 nFh| no.\ of data points outside outer

fences

The stem-and-leaf plot shows on each line the stem value followed by the string made
up of the leaf digits. If the stem_sz is not 1 the successive leaf values are separated
by ll’".

With no return argument, the plot is immediately displayed. If an output argument
is provided, the plot is returned as an array of strings.

The leaf digits are not sorted. If sorted leaf values are desired, use xs = sort (x)
before calling stemleaf (xs).

The stem and leaf plot and associated displays are described in: Ch. 3, Exploratory
Data Analysis by J. W. Tukey, Addison-Wesley, 1977.

See also: [hist], page 276, [printd], page 278.

printd (obj, filename) [Function File]
out_file = printd (...) [Function File]
Convert any object acceptable to disp into the format selected by the suffix of file-
name. If the return argument out_file is given, the name of the created file is returned.

This function is intended to facilitate manipulation of the output of functions such
as stemleaf.

See also: [stemleaf], page 277.

Function File
Function File

h = stairs (...)
[xstep, ystep] = stairs (...)
Produce a stairstep plot.

stairs (y) [Function File]
stairs (x, y) [Function File]
stairs (..., style) [Function File]
stairs (..., prop, val, ...) [Function File]
stairs (hax, ...) [Function File]

[]

[]

The arguments x and y may be vectors or matrices. If only one argument is given, it
is taken as a vector of Y values and the X coordinates are taken to be the indices of
the elements.

The style to use for the plot can be defined with a line style style of the same format
as the plot command.

Chapter 15: Plotting 279

Multiple property/value pairs may be specified, but they must appear in pairs.

If the first argument hax is an axis handle, then plot into this axis, rather than the
current axis handle returned by gca.

If one output argument is requested, return a graphics handle to the created plot.
If two output arguments are specified, the data are generated but not plotted. For
example,

stairs (x, y);
and

[xs, ys] = stairs (x, y);
plot (xs, ys);

are equivalent.

See also: [bar], page 274, |hist], page 276, [plot], page 270, [stem], page 279.

stem (y) [Function File]
stem (x, y) [Function File]
stem (..., linespec) [Function File]
stem (..., "filled") [Function File]
stem (..., prop, val, ...) [Function File]
stem (hax, ...) [Function File]

[]

h = stem (...) Function File

Plot a 2-D stem graph.

If only one argument is given, it is taken as the y-values and the x-coordinates are
taken from the indices of the elements.

If ¥ is a matrix, then each column of the matrix is plotted as a separate stem graph.
In this case x can either be a vector, the same length as the number of rows in y, or
it can be a matrix of the same size as y.

The default color is "b" (blue), the default line style is "-", and the default marker
is "o". The line style can be altered by the 1linespec argument in the same manner
as the plot command. If the "filled" argument is present the markers at the top
of the stems will be filled in. For example,

x = 1:10;

y = 2%x;

stem (x, y, "r");
plots 10 stems with heights from 2 to 20 in red;
Optional property/value pairs may be specified to control the appearance of the plot.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a handle to a "stem series" hggroup. The single
hggroup handle has all of the graphical elements comprising the plot as its children;
This allows the properties of multiple graphics objects to be changed by modifying
just a single property of the "stem series" hggroup.

For example,

280 GNU Octave

x = [0:10]7;
y = [sin(x), cos(x)]
h = stem (%, y);

set (h(2), "color", "g");
set (h(1), "basevalue", -1)
changes the color of the second "stem series" and moves the base line of the first.

Stem Series Properties
linestyle The linestyle of the stem. (Default: "-")
linewidth The width of the stem. (Default: 0.5)

color The color of the stem, and if not separately specified, the marker. (De-
fault: "b" [blue])

marker The marker symbol to use at the top of each stem. (Default: "o")

markeredgecolor
The edge color of the marker. (Default: "color" property)

markerfacecolor
The color to use for "filling" the marker. (Default: "none" [unfilled])

markersize
The size of the marker. (Default: 6)

baseline The handle of the line object which implements the baseline. Use set
with the returned handle to change graphic properties of the baseline.

basevalue The y-value where the baseline is drawn. (Default: 0)

See also: [stem3], page 280, [bar], page 274, [hist], page 276, [plot], page 270, [stairs],
page 278.

stem3 (x, y, z) [Function File]
stem3 (..., linespec) [Function File]
stem3 (..., "filled") [Function File]
stem3 (..., prop, val, ...) [Function File]
stem3 (hax, ...) [Function File]
h = stem3 (...) [Function File]
Plot a 3-D stem graph.

Stems are drawn from the height z to the location in the x-y plane determined by x
and y. The default color is "b" (blue), the default line style is "-", and the default
marker is "o".

The line style can be altered by the linespec argument in the same manner as the
plot command. If the "filled" argument is present the markers at the top of the
stems will be filled in.

Optional property/value pairs may be specified to control the appearance of the plot.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

Chapter 15: Plotting

281

The optional return value h is a handle to the "stem series" hggroup containing the
line and marker objects used for the plot. See [stem], page 279, for a description of

the "stem series" object.

Example:

theta = 0:0.2:6;
stem3 (cos (theta), sin (theta), theta);

plots 31 stems with heights from 0 to 6 lying on a circle.

Implementation Note: Color definitions with RGB-triples are not valid.

See also: [stem], page 279, [bar|, page 274, [hist], page 276, [plot], page 270.

scatter
scatter
scatter

scatter
scatter

(
E
scatter (..., style)
(
(

..., "filled")
.., prop, val, ...)

scatter (hax, ...)
h = scatter (...)

Draw a 2-D scatter plot.

Function File
Function File
Function File
Function File
Function File
Function File
Function File
Function File

[]
[]
[]
[]
[]
[]
[]
[]

A marker is plotted at each point defined by the coordinates in the vectors x and y.

The size of the markers is determined by s, which can be a scalar or a vector of the
same length as x and y. If s is not given, or is an empty matrix, then a default value
of 8 points is used.

The color of the markers is determined by ¢, which can be a string defining a fixed
color; a 3-element vector giving the red, green, and blue components of the color; a
vector of the same length as x that gives a scaled index into the current colormap; or

an Nx3 matrix defining the RGB color of each marker individually.

The marker to use can be changed with the style argument, that is a string defining a
marker in the same manner as the plot command. If no marker is specified it defaults
to "o" or circles. If the argument "filled" is given then the markers are filled.

Additional property/value pairs are passed directly to the underlying patch object.

If the first argument hax is an axes handle, then plot into this axis, rather than the

current axes returned by gca.

The optional return value h is a graphics handle to the created patch object.

Example:

x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [1, sqrt (x.72 + y."2));

See also: [scatter3], page 318, [patch], page 353, [plot], page 270.

plotmatrix
plotmatrix
plotmatrix
plotmatrix

X, ¥)

x)

..., style)
hax, ...)

[Function File]
[Function File]
[Function File]
[Function File]

282 GNU Octave

(h, ax, bigax, p, pax] = plotmatrix (...) [Function File]
Scatter plot of the columns of one matrix against another.

Given the arguments x and y, that have a matching number of rows, plotmatrix
plots a set of axes corresponding to

plot (x(:, 1), y(C:y 3))
Given a single argument x this is equivalent to

plotmatrix (x, x)
except that the diagonal of the set of axes will be replaced with the histogram hist
(x(:, 1)),
The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h provides handles to the individual graphics objects in the
scatter plots, whereas ax returns the handles to the scatter plot axis objects. bigax is
a hidden axis object that surrounds the other axes, such that the commands xlabel,
title, etc., will be associated with this hidden axis. Finally, p returns the graphics
objects associated with the histogram and pax the corresponding axes objects.

Example:
plotmatrix (randn (100, 3), "g+")

See also: [scatter]|, page 281, [plot], page 270.

Function File

pareto (y) [Function File]
pareto (y, x) [Function File]
pareto (hax, ...) [Function File]

[]

h = pareto (...)
Draw a Pareto chart.
A Pareto chart is a bar graph that arranges information in such a way that priorities
for process improvement can be established; It organizes and displays information to
show the relative importance of data. The chart is similar to the histogram or bar
chart, except that the bars are arranged in decreasing magnitude from left to right
along the x-axis.

The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the
majority of an effect is due to a small subset of the causes. For quality improvement,
the first few contributing causes (leftmost bars as presented on the diagram) to a
problem usually account for the majority of the result. Thus, targeting these "major
causes" for elimination results in the most cost-effective improvement scheme.
Typically only the magnitude data y is present in which case x is taken to be the
range 1 : length (y). If x is given it may be a string array, a cell array of strings,
or a numerical vector.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a 2-element vector with a graphics handle for the
created bar plot and a second handle for the created line plot.

Chapter 15: Plotting 283

rose
rose
rose
rose
h =

[thout rout] = rose (...)

An example of the use of pareto is

Cheese = {"Cheddar", "Swiss", "Camembert",
"Munster", "Stilton", "Blue"};

Sold = [105, 30, 70, 10, 15, 20];

pareto (Sold, Cheese);

See also: [bar|, page 274, [barh], page 276, [hist], page 276, [pie]|, page 291, [plot],
page 270.

Function File
Function File

rose (...)

(th) [Function File]
(th, nbins) [Function File]
(th, bins) [Function File]
(hax, ...) [Function File]
[]
[]

Plot an angular histogram.
With one vector argument, th, plot the histogram with 20 angular bins. If th is a
matrix then each column of th produces a separate histogram.

If nbins is given and is a scalar, then the histogram is produced with nbin bins. If
bins is a vector, then the center of each bin is defined by the values of bins and the
number of bins is given by the number of elements in bins.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a vector of graphics handles to the line objects repre-
senting each histogram.
If two output arguments are requested then no plot is made and the polar vectors
necessary to plot the histogram are returned instead.

[th, r] = rose ([2*randn(le5,1), pi + 2*randn(le5,1)]);

polar (th, r);

See also: [hist], page 276, [polar], page 290.

The contour, contourf and contourc functions produce two-dimensional contour plots
from three-dimensional data.

contour (z) [Function File]
contour (z, vn) [Function File]
contour (x, y, z) [Function File]
contour (x, y, z, vn) [Function File]
contour (.. style) [Function File]
contour (ha [Function File]
[c, h] = contour (...) [Function File]

Create a 2-D contour plot.

Plot level curves (contour lines) of the matrix z, using the contour matrix ¢ computed
by contourc from the same arguments; see the latter for their interpretation.

The appearance of contour lines can be defined with a line style style in the same

manner as plot. Only line style and color are used; Any markers defined by style are
ignored.

284

contourf (z) []
contourf (z, vn) []
contourf (x,y, z) []
contourf (x,y, z, vn) [Function File]
contourf (..., style) []
contourf (hax, ...) []
[c, h] = contourf (...) []

GNU Octave

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional output ¢ are the contour levels in contourc format.

The optional return value h is a graphics handle to the hggroup comprising the contour
lines.

Example:
x = 0:2;
y = x5

z =x’ *y;
contour (x, y, z, 2:3)

See also: [ezcontour], page 301, [contourc|, page 284, [contourf], page 284, [contour3],
page 285, [clabel], page 327, [meshc]|, page 305, [surfc], page 307, [caxis], page 298,
[colormap], page 688, [plot], page 270.

Function File
Function File
Function File

Function File
Function File
Function File
Create a 2-D contour plot with filled intervals.

Plot level curves (contour lines) of the matrix z and fill the region between lines with
colors from the current colormap.

The level curves are taken from the contour matrix ¢ computed by contourc for the
same arguments; see the latter for their interpretation.

The appearance of contour lines can be defined with a line style style in the same
manner as plot. Only line style and color are used; Any markers defined by style are
ignored.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional output ¢ are the contour levels in contourc format.

The optional return value h is a graphics handle to the hgg