GNU Libidn

GNU Libidn

This manual is last updated 1 November 2003 for version 0.3.4 of GNU Libidn.

Copyright © 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections including “Commercial Support”, with the Front-Cover Texts being “A GNU Manual,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF's Back-Cover Text is: “You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise funds for GNU development.”

Table of Contents

] 1 1 o o [SRS 1
P20 1 11 Yo [o 1o o P 2
2.1, GELlING STAMEM.c.e ittt b ettt bbbt e b et b e st b et b et bt bbb a e e b e b e e 2

A =T LU | =2 TS US U URPR 2

2R B ST U T o] oo =To B o F=u 0] f 41RO 3

A Lo g al a1 (ol T IS o] o Lo o AU 4

2.5. Downloading and INSEAIING ..o bbb e e 4

2.6. BUQ REPOIS.....ceteeeiee ettt et b ettt et s et s he e b e e b e e he e b e ehe e e e eheeaeesbesae et e nbeeanenneeas 5

W R o] o1 01U {1 o TP O TSRS SURURORI 5

G T =T 0= = 11 o TSRS 7
0 I T T= T [T PSSR PSP PETR PR 7

3.2, INIHANZALION. ... vttt r e e r e e r e nnene e 8

3230 VEISION CRECK ...ttt bbbttt e eb et 8

G = TN 1o [T o d g L=TE=T 10 (o= 8

3.5, AULOCONT EESES. ..ttt E et e e bRt p et nn e ner e 9
3.5.1. AUtOCONT tESE VIAKG-CONTIG oiiteeieciictieie ettt ettt st e et e eae e e saeesresreennesbe e 9

3.5.2. Standalone AULOCONT LESL......c.virirrrererirere e s 10

111V O Tox 1T LRSS 11
o I o 1= = Lo =T g 1T T Ta o T T4=Y o X o 11

4.2. Unicode Encoding TranSfOrMation............couriirriniiinee e s 11

ZZ0C T U T TTotoTo L3N \\ Lo g g F= 2= £ o) o 12

4.4, CharacCter SEt CONVEISION.......ciiiieeeeeerestestesteseesee e s testeseessesesessessessestesseseeeesessessessessensensesessessesses 13

5. SHINGPIEP FUNCHONS. ...ttt bbbt bbbt b et b et bbbt e e 15
5.1. Header fil&stringprep.n o et e e nne e 15

5.2. Defining A StriNgPrep Profile.......o e 15

LT C T o= (1] 1 ¢ O o [ST URTRRN 15

L o T g £] I =T TSRS U USSR 16

LR T 0o (I o o 1 o] 1SR PRSI 16

5.6. StriNGPrep Profile MACTOS.ooi ettt s b e b s e nae e 19

6. PUNYCOAE FUNCHIONS.....cuiititiieieeee ettt sttt ettt b b b se e e e e ae b e b e b e se e e e bt ebesbeseess e s e e e neeneebennas 21
L0 o 1= T [T a1 3 TU)Y oo o [0 o SRS 21

6.2. REIUIM COUES......ooiiieriierteerre ettt r et n et n e n s 21

RGN o ToToTe [@feTe L= = lo T o1 A 1] L= RS 21

6.4, COIE FUNCHIONS.......cotiiiierreicrteteree ettt r et r et r et r e n e 21

7. IDNA FUNCHONS ...ttt R e R bt n s s e nnan 24
% o (Y= 1o [T g 1o g T OO OSSOSO 24

7.2, REIUIN COUBSottt sttt ettt et s b e s be et e et e eae e besaeebesbeesbesbeebeansesbeensesbeeasebesbeenbeebeennesaesnnes 24

48 T o] o1 o I -V 1= S 25

A (=157 1 o TSSOSO 25

48T o] 1= 38 LU] od 1T 1= 25

7.6. SIMPIified TOASCI INEITACE.......ccoreiiririirie bbb 27

7.7. Simplified TOUNICOTE INTEITACE.coiiieieriire bbb 27

8. EXBIMPIES ..ottt bbb f bR R R bR £ R R e bbbt bt bR eene e 30
8.1 EXAIMPIE L.ttt ettt b e e b e bt bRt R R R e R e b e bRt e b et e e 30

8.2, EXAIMPIE 2.ttt bbb bbbt R R R R e R bt bbbt n e 31

8.3 EXAIMPIE 3.ttt bbb bbb R R R R e R e b e bbbt p e 35

8.4, EXAIMPIE 4.ttt bbb R R R R R bbbt bt p e 37

9. INVOKING TN ...ttt b bbbt b bt £ bt bt e bt b et b et b et e bttt e b e 39

0 T - Vo S 40
R =2 od] o o OSSOSO ST T ST 41
D2 @ o] 1] LU USSR 42
13, ENVIrONMENT VATADIES. ...ttt sttt et s st e e e te st e eaeetesaeeneesresneestenreens 43
LA, EIMACS APl .ottt ettt st e e e te et s be s b et et e e e aeebeebesbesee e eaeeheeReeRe et e beneeaeeReeheebesteseeneereerenrenrens 44
14.1. PUNYCOAE EMACS AR ..ottt sttt st st e ra et e saeeeesreennestenneens 44
I 1 4 F= Vot Y SRS 44
15, ACKNOWIEAQEMENTS......cieiiieieectieecte ettt e s st et e st e s reesae s tesae e e sae e e e sseeneessesseensesseesaensesseeneessesneensessenns 46
(@0 o107 =T o B 1 o =TS 47
FUNCtion and Variable INAEXcccuceeeeicise et st s et e e e e e e sresbestesaeneesensnnnennens 48
F N 0] o) 1 o T I 1 L= I o] r= Y 49
AL PrEAMDIE. ... ottt et sttt s b et et e e be et e e be st e s besbe e beebeeae e beeaeentesheentenbeeheenbeereenes 49
A.2. How to Apply These Terms to Your NeW LiDrari€S......ccocveeeveeeriisenieseneseeesess e e e sse e 55
2 OTo] o) Y/ o TR I TESTH Y= U 11 PSSR 57
B.1. GNU Free DoCUMENLAtiION LICENSE.......coieeitieieceeee ettt ettt ra et sbe e sreeanestesreens 57
B.2. How to use this License for your dOCUMENLS.........cocoiriiiiiiireie e 62

Chapter 1. GNU Libidn

This manual is last updated 1 November 2003 for version 0.3.4 of GNU Libidn.
Copyright © 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections including “Commercial Support”, with the Front-Cover Texts being “A GNU Manual,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF's Back-Cover Text is: “You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise funds for GNU development.”

Chapter 2. Introduction

GNU Libidn is an implementation of the Stringprep, Punycode and IDNA specifications defined by the IETF
Internationalized Domain Names (IDN) working group, used for internationalized domain names. The package
is available under the GNU Lesser General Public License.

The library contains a generic Stringprep implementation that does Unicode 3.2 NFKC normalization, mapping
and prohibitation of characters, and bidirectional character handling. Profiles for iSCSI, Kerberos 5, Nameprep,
SASL and XMPP are included. Punycode and ASCII Compatible Encoding (ACE) via IDNA are supported.

The Stringprep API consists of two main functions, one for converting data from the system’s native
representation into UTF-8, and one function to perform the Stringprep processing. Adding a new Stringprep
profile for your application within the APl is straightforward. The Punycode API consists of one encoding
function and one decoding function. The IDNA API consists of the TOASCII and ToUnicode functions, as well
as an high-level interface for converting entire domain names to and from the ACE encoded form.

The library is used by, e.g., GNU SASL and Shishi to process user names and passwords. Libidn can be built
into GNU Libc to enable a new system-wide getaddrinfo flag for IDN processing.

Libidn is developed for the GNU/Linux system, but runs on over 20 Unix platforms (including Solaris, IRIX,
AIX, and Tru64) and Windows. Libidn is written in C and (parts of) the APl is accessible from C, C++, Emacs
Lisp, Python and Java.

2.1. Getting Started

This manual documents the library programming interface. All functions and data types provided by the library
are explained.

The reader is assumed to possess basic familiarity with internationalization concepts and network programming
in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives a good introduction into
the library and how it can be used in an application. Forward references are included where necessary. Later on,
the manual can be used as a reference manual to get just the information needed about any particular interface of
the library. Experienced programmers might want to start looking at the examples at the end of the manual
(Chapter §, and then only read up those parts of the interface which are unclear.

2.2. Features

This library might have a couple of advantages over other libraries doing a similar job.

Chapter 2. Introduction

It's Free Software

Anybody can use, modify, and redistribute it under the terms of the GNU Lesser General Public License.

It's thread-safe

No global state is kept in the library.

It's portable

It should work on all Unix like operating systems, including Windows.

2.3. Supported Platforms

Libidn has at some point in time been tested on the following platforms.

1. Debian GNU/Linux 3.0 (Woody) GCC 2.95.4 and GNU Make. This is the main development platform.
alphaev67-unknown-linux-gnu , alphaev6-unknown-linux-gnu , arm-unknown-linux-gnu ,
armv4l-unknown-linux-gnu , hppa-unknown-linux-gnu , hppa64-unknown-linux-gnu ,
i686-pc-linux-gnu , ia64-unknown-linux-gnu , mM68Kk-unknown-linux-gnu ,
mips-unknown-linux-gnu , mipsel-unknown-linux-gnu , powerpc-unknown-linux-gnu ,
s$390-ibm-linux-gnu , sparc-unknown-linux-gnu , sparc64-unknown-linux-gnu

2. Debian GNU/Linux 2.1 GCC 2.95.1 and GNU Makemv4l-unknown-linux-gnu

3. Tru64 UNIX Tru64 UNIX C compiler and Tru64 Makelphaev67-dec-osf5.1
alphaev68-dec-o0sf5.1

4. SUSE Linux 7.1 GCC 2.96 and GNU Mak#phaev6-unknown-linux-gnu ,
alphaev67-unknown-linux-gnu

5. SUSE Linux 7.2a GCC 3.0 and GNU Mak&64-unknown-linux-gnu
6. SUSE Linux GCC 3.2.2 and GNU Makes6_64-unknown-linux-gnu (AMDG64 Opteron “Melody”).

7.RedHat Linux 7.2 GCC 2.96 and GNU Mak#phaev6-unknown-linux-gnu ,
alphaev67-unknown-linux-gnu , ia64-unknown-linux-gnu

8. RedHat Linux 8.0 GCC 3.2 and GNU Makiég6-pc-linux-gnu
9. RedHat Advanced Server 2.1 GCC 2.96 and GNU M#&s&-pc-linux-gnu
10. Slackware Linux 8.0.01 GCC 2.95.3 and GNU Maié86-pc-linux-gnu
11.Mandrake Linux 9.0 GCC 3.2 and GNU Makes6-pc-linux-gnu
12.IRIX 6.5 MIPS C compiler, IRIX Makemips-sgi-irix6.5
13.AlIX 4.3.2 IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0
14. Microsoft Windows 2000 (Cygwin) GCC 3.2, GNU malkes6-pc-cygwin
15.HP-UX 11 HP-UX C compiler and HP Mak&64-hp-hpux11.22 , hppa2.0w-hp-hpux11.11
16.SUN Solaris 2.8 Sun WorkShop Compiler C 6.0 and SUN Makerc-sun-solaris2.8
17.SUN Solaris 2.9 Sun Forte Developer 7 C compiler and GNU Msggac-sun-solaris2.9

18.NetBSD 1.6 GCC 2.95.3 and GNU Mak#&pha-unknown-netbsd1.6 ,
i386-unknown-netbsdelf1.6

19.0penBSD 3.1 and 3.2 GCC 2.95.3 and GNU Madgha-unknown-openbsd3.1 ,
i386-unknown-openbsd3.1

Chapter 2. Introduction
20.FreeBSD 4.7 and 4.8 GCC 2.95.4 and GNU Madpha-unknown-freebsd4.7 ,
alpha-unknown-freebsd4.8 , 1386-unknown-freebsd4.7 , i386-unknown-freebsd4.8
21.MacOS X 10.2 Server Edition GCC 3.1 and GNU Magewerpc-apple-darwin6.5

If you use Libidn on, or port Libidn to, a new platform please report it to the author.

2.4. Commercial Support

Commercial support is available for users of GNU Libidn. The kind of support that can be purchased may
include:

« Implement new features. Such as country code specific profiling to support a restricted subset of Unicode.

- Port Libidn to new platforms. This could include porting Libidn to an embedded platforms that may need
memory or size optimization.

« Integrating IDN support in your existing project.

« System design of components related to IDN.

If you are interested, please write to:

Simon Josefsson Datakonsult
Drottningholmsv. 70

112 42 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU Libidn and would like to be mentioned here, contact the author
(Section 2.6.

2.5. Downloading and Installing

The package can be downloaded from several places, inclhting/josefsson.org/libidn/releasesrhe latest
version is stored in a file, e.dibidn-0.3.4.tar.gz where the0.3.4 indicate the highest version number.

The package is then extracted, configured and built like many other packages that use Autoconf. For detailed
information on configuring and building it, refer to ti¢STALL file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the package. You will need a few
basic tools, such ah, make andcc.

$ wget -q http://josefsson.org/libidn/releases/libidn-0.3.4.tar.gz
$ tar xfz libidn-0.3.4.tar.gz
$ cd libidn-0.3.4/

Chapter 2. Introduction
$./configure
$ make

$ make install

After that Libidn should be properly installed and ready for use.

2.6. Bug Reports

If you think you have found a bug in Libidn, please investigate it and report it.

- Please make sure that the bug is really in Libidn, and preferably also check that it hasn't already been fixed in
the latest version.

+ You have to send us a test case that makes it possible for us to reproduce the bug.

« You also have to explain what is wrong; if you get a crash, or if the results printed are not good and in that
case, in what way. Make sure that the bug report includes all information you would need to fix this kind of
bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can be tested or debugged.
Vague queries or piecemeal messages are difficult to act on and don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of the software; if the bug
report is poor, we won't do anything about it (apart from asking you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language needs to be improved,
please also send a note.

Send your bug report to:

bug-libidn@gnu.org

2.7. Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding support for a new
feature — you should submit it as a bug rep&eg¢tion 2.8. There are some things that you can do to increase the
chances for it to be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright of your work to the
Free Software Foundation. This is to protect the freedom of the project. If you have not already signed papers,
we will send you the necessary information when you submit your contribution.

Chapter 2. Introduction

For contributions that doesn't consist of actual programming code, the only guidelines are common sense. Use it.

For code contributions, a number of style guides will help you:

Coding Style. Follow the GNU Standards document ().

If you normally code using another coding standard, there is no problem, but you shoirddeause to
reformat the code () before submitting your work.

Use the unified diff formadiiff -u

Return errors. No reason whatsoever should abort the execution of the library. Even memory allocation errors,
e.g. when malloc return NULL, should work although result in an error code.

Design with thread safety in mind. Don't use global variables and the like.

Avoid using the C math library. It causes problems for embedded implementations, and in most situations it is
very easy to avoid using it.

Document your functions. Use comments before each function headers, that, if properly formatted, are
extracted into GTK-DOC web pages. Don't forget to update the Texinfo manual as well.

Supply a ChangelLog and NEWS entries, where appropriate.

Chapter 3. Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system. The necessary changes
are small and explained in the following sections. At the end of this chapter, it is described how the library is
initialized, and how the requirements of the library are verified.

A faster way to find out how to adapt your application for use with ‘Libidn’ may be to look at the examples at the
end of this manualGhapter §.

3.1. Header

The library contains a few independent parts, and each part export the interfaces (data types and functions) in a
header file. You must include the appropriate header files in all programs using the library, either directly or
through some other header file, like this:

#include <stringprep.h >

The header files and the functions they define are categorized as follows:

stringprep.h

The low-level stringprep API entry point. For IDN applications, this is usually invoked via IDNA. Some
applications, specifically non-IDN ones, may want to prepare strings directly though, and should include
this header file.

The name space of the stringprep part of Libidstigigprep* for function namesStringprep* for
data types an8TRINGPREP_*for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

punycode.h

The entry point to Punycode encoding and decoding functions. Normally punycode is used via the idna.h
interface, but some application may want to perform raw punycode operations.

The name space of the punycode part of Libidpusycode_* for function namesPunycode* for data
types andPUNYCODE_for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

idna.h

The entry point to the IDNA functions. This is the normal entry point for applications that need IDN
functionality.

Chapter 3. Preparation

The name space of the IDNA part of Libidnigma_* for function namesidna* for data types and
IDNA_* for other symbols. In addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application.

3.2. Initialization

Libidn is stateless and does not need any initialization.

3.3. Version Check

It is often desirable to check that the version of ‘Libidn’ used is indeed one which fits all requirements. Even
with binary compatibility new features may have been introduced but due to problem with the dynamic linker an
old version is actually used. So you may want to check that the version is okay right after program startup.

const char *stringprep_check_version (const char *req_version) reqg_version :Required version
number, or NULL.

Check that the the version of the library is at minimum the requested one and return the version string; return
NULL if the condition is not satisfied. If a NULL is passed to this function, no check is done, but the version
string is simply returned.

SeeSTRINGPREP_VERSIONor a suitablaeq_version string.

Return valueMersion string of run-time library, or NULL if the run-time library does not meet the required
version number.

The normal way to use the function is to put something similar to the following first in madir:

if (Istringprep_check_version (STRINGPREP_VERSION))
{

printf ("stringprep_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
}

3.4. Building the source

If you want to compile a source file including e.g. the ‘idna.h’ header file, you must make sure that the compiler
can find it in the directory hierarchy. This is accomplished by adding the path to the directory in which the

Chapter 3. Preparation

header file is located to the compilers include file search path (via tiogtion).

However, the path to the include file is determined at the time the source is configured. To solve this problem,
‘Libidn’ uses the external packagég-configthat knows the path to the include file and other configuration
options. The options that need to be added to the compiler invocation at compile time are output by the
--cflags option topkg-config libidn. The following example shows how it can be used at the command line:

gce -¢ foo.c ‘pkg-config libidn --cflags’

Adding the output opkg-config libidn --cflags to the compilers command line will ensure that the
compiler can find e.g. the idna.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler has to find the library
files. For this to work, the path to the library files has to be added to the library search path (uiaapigon).

For this, the option-libs to pkg-config libidn can be used. For convenience, this option also outputs all other
options that are required to link the program with the ‘libidn’ libarary. The example shows how tiodink

with the ‘libidn’ library to a progranfoo.

gcc -0 foo foo.o ‘pkg-config libidn --libs*

Of course you can also combine both examples to a single command by specifying both oppikgpstmfig:

gce -0 foo foo.c ‘pkg-config libidn --cflags --libs'

3.5. Autoconf tests

If you work on a project that uses Autoconf () to help find installed libraries, the suggestions in the previous
section are not the entire story. There are a few methods to detect and incorporate Libidn into your Autoconf
based package.

3.5.1. Autoconf test viapkg-config

If your audience is a typical GNU/Linux desktop, you can often assume they hapkgeenfig tool
installed, in which you can use its Autoconf M4 macro to find and set up your package for use with Shishi. The
following illustrate this scenario.

Chapter 3. Preparation

AC_ARG_ENABLE(idn,
AC_HELP_STRING([--disable-idn],

[Don’t use Libidn]),
libidn=$enableval)

if test "$libidn" != "no" ; then
PKG_CHECK_MODULES(LIBIDN, libidn >= 0.0.0,
[libidn=yes],
[libidn=no])
if test "$libidn" = "yes" ; then
libidn=no
AC_MSG_WARN([Libidn not found])
else
libidn=yes

AC_DEFINE(USE_LIBIDN, 1, [Define to 1 if you want Libidn.])
fi

fi

AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT ($libidn)

3.5.2. Standalone Autoconf test

The following illustrate a standalone autconf test, that work regardless of if your project Libtool () or not. It is
the most portable solution, and is recommended.

AC_CHECK_HEADER(idna.h,

AC_CHECK_LIB(idn, stringprep_check_version,

[libidn=yes AC_SUBST(SHISHI_LIBS, -lidn)],

libidn=no),

kerberos5=no)

AC_ARG_ENABLE(idn, AC_HELP_STRING([--disable-idn], [Don't use Libidn]),
libidn=$enableval)

if test "$libidn" != "no" ; then
AC_DEFINE(USE_LIBIDN, 1, [Define to 1 if you want Libidn.])
else

AC_MSG_WARN([Libidn not found])

fi

AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT ($libidn)

10

Chapter 4. Utility Functions

The rest of this library makes extensive use of Unicode characters. In order to interface this library with the
outside world, your application may need to make various Unicode transformations.

4.1. Header filestringprep.h

To use the functions explained in this chapter, you need to include therifiigorep.h using:

#include <stringprep.h >

4.2. Unicode Encoding Transformation

uint32_tstringprep_utf8_to_unichar (const char *p) p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode charactboel not point to a valid UTF-8
encoded character, results are undefined.

Return valuethe resulting character.
int stringprep_unichar_to_utf8 (uint32_tc, char *outbuf) c:al1S010646 character code

outbuf : output buffer, must have at least 6 bytes of spacRULL, the length will be computed and returned
and nothing will be written toutbuf .

Converts a single character to UTF-8.
Return valuenumber of bytes written.
uint32_tstringprep_utf8_to_unichar (const char) p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode charactiwel not point to a valid UTF-8
encoded character, results are undefined.

Return valuethe resulting character.

char *stringprep_ucs4_to_utf8 (const uint32_t *str , ssize_{len , size_t *items_read , size t*
items_written) str : a UCS-4 encoded string

11

Chapter 4. Utility Functions

len : the maximum length oftr to use. Iflen < 0, then the string is terminated with a O character.
items_read :location to store number of characters read readi|ic L.

items_written - location to store number of bytes writtenlULL The value here stored does not include
the trailing O byte.

Convert a string from a 32-bit fixed width representation as UCS-4. to UTF-8. The result will be terminated with
a 0 byte.

Return valuea pointer to a newly allocated UTF-8 string. This value must be freedfreitl) . If an error
occursNULLwill be returned ana@rror ~ set.

uint32_t *stringprep_utf8_to_ucs4 (const char *str , ssize_ten , size_t *items_written)str :a
UTF-8 encoded string

len : the maximum length oftr to use. Iflen < 0, then the string is nul-terminated.
items_written : location to store the number of characters in the resuldic L

Convert a string from UTF-8 to a 32-bit fixed width representation as UCS-4, assuming valid UTF-8 input. This
function does no error checking on the input.

Return valuea pointer to a newly allocated UCS-4 string. This value must be freedfwit()

4.3. Unicode Normalization

uint32_t *stringprep_ucs4_nfkc_normalize (uint32_t *str , ssize_1len) str : a Unicode string.

len :length ofstr array, or -1 ifstr is nul-terminated.

Converts UCS4 string into UTF-8 and rustsingprep_utf8_nfkc_normalize()

Return valuea newly allocated Unicode string, that is the NFKC normalized formtrof.

char *stringprep_utf8_nfkc_normalize (const char *str , ssize_ien) str : a UTF-8 encoded string.
len :length ofstr , in bytes, or -1 ifstr is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character with an accent is
represented as a base character and combining accent or as a single precomposed character.

12

Chapter 4. Utility Functions

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that do not affect the text
content, such as the above-mentioned accent representation. It standardizes the "compatibility” characters in
Unicode, such as SUPERSCRIPT THREE to the standard forms (in this case DIGIT THREE). Formatting
information may be lost but for most text operations such characters should be considered the same. It returns a
result with composed forms rather than a maximally decomposed form.

Return valuea newly allocated string, that is the NFKC normalized fornstof .

4.4. Character Set Conversion

const char *stringprep_locale_charset (void) Find out system locale charset.

Note that this function return what it believe the SYSTEM is using as a locale, not what locale the program is
currently in (modified, e.g., by a setlocale(LC_CTYPE, "ISO-8859-1")). The reason is that data read from
argv(], stdin etc comes from the system, and is more likely to be encoded using the system locale than the
program locale.

You can set the environment variable CHARSET to override the value returned. Note that this function caches
the result, so you will have to modify CHARSET before calling (even indirectly) any stringprep functions, e.g.,
by setting it when invoking the application.

Return valueReturn the character set used by the system locale. It will never return NULL, but use "ASCII" as
a fallback.

char *stringprep_convert (const char *str , const char to_codeset , const char from_codeset)
str : input zero-terminated string.

to_codeset : name of destination character set.

from_codeset : name of origin character set, as usedsby.

Convert the string from one character set to another using the systenvg function.

Return valueReturns newly allocated zero-terminated string whicétris transcoded into to_codeset.
char *stringprep_locale_to_utf8 (const char *str) str : input zero terminated string.
Convert string encoded in the locale’s character set into UTF-8 by ssingprep_convert()

Return valueReturns newly allocated zero-terminated string whicktris transcoded into UTF-8.

char *stringprep_utf8_to_locale (const char *str) str : input zero terminated string.

13

Chapter 4. Utility Functions

Convert string encoded in UTF-8 into the locale’s character set by ssingprep_convert()

Return valueReturns newly allocated zero-terminated string whicdtiis transcoded into the locale’s character
set.

14

Chapter 5. Stringprep Functions

Stringprep describes a framework for preparing Unicode text strings in order to increase the likelihood that string
input and string comparison work in ways that make sense for typical users throughout the world. The stringprep
protocol is useful for protocol identifier values, company and personal names, internationalized domain names,
and other text strings.

5.1. Header filestringprep.h

To use the functions explained in this chapter, you need to include therifiigorep.h using:

#include <stringprep.h >

5.2. Defining A Stringprep Profile

Further types and structures are defined for applications that want to specify their own stringprep profile. As
these are fairly obscure, and by necessity tied to the implementation, we do not document them here. Look into
thestringprep.h header file, and therofiles.c source code for the details.

5.3. Return Codes

All functions return a code of thetringprep_rc enumerated type:

Stringprep_rsSTRINGPREP_OK = Buccessful operation. This value is guaranteed to always be zero, the
remaining ones are only guaranteed to hold non-zero values, for logical comparison purposes.

Stringprep_rcSTRINGPREP_CONTAINS_UNASSIGNEring contain unassigned Unicode code points, which is
forbidden by the profile.

Stringprep_r6STRINGPREP_CONTAINS_PROHIBITEString contain code points prohibited by the profile.

Stringprep_rcSTRINGPREP_BIDI_BOTH_L_AND_RAIString contain code points with conflicting bidirection
category.

Stringprep_rcSTRINGPREP_BIDI_LEADTRAIL_NOT_RALLeading and trailing character in string not of proper
bidirectional category.

15

Chapter 5. Stringprep Functions

Stringprep_rSTRINGPREP_BIDI_CONTAINS_PROHIBITEDContains prohibited code points detected by
bidirectional code.

Stringprep_rSTRINGPREP_TOO_SMALL_BUFFBRIffer handed to function was too small. This usually
indicate a problem in the calling application.

Stringprep_rsSTRINGPREP_PROFILE_ERRORhe stringprep profile was inconsistent. This usually indicate an
internal error in the library.

Stringprep_rsSTRINGPREP_FLAG_ERROFRhe supplied flag conflicted with profile. This usually indicate a
problem in the calling application.

Stringprep_rcSTRINGPREP_UNKNOWN_PROFITEe supplied profile name was not known to the library.

Stringprep_rcSTRINGPREP_NFKC_FAILED'he Unicode NFKC operation failed. This usually indicate an
internal error in the library.

Stringprep_rcSTRINGPREP_MALLOC_ERRORemalloc was out of memory. This is usually a fatal error.

5.4. Control Flags

Stringprep_profile_flagSTRINGPREP_NO_NFKDisable the NFKC normalization, as well as selecting the
non-NFKC case folding tables. Usually the profile specifies BIDI and NFKC settings, and applications should
not override it unless in special situations.

Stringprep_profile_flagSTRINGPREP_NO_BIDIDisable the BIDI step. Usually the profile specifies BIDI and
NFKC settings, and applications should not override it unless in special situations.

Stringprep_profile_flagSTRINGPREP_NO_UNASSIGNEWake the library return with an error if string contains
unassigned characters according to profile.

5.5. Core Functions

int stringprep_4i (uint32_t *ucs4 , size_t *len , size_tmaxucs4len , Stringprep_profile_flagdags
const Stringprep_profile profile) ucs4 : input/output array with string to prepare.

len : on input, length of input array with Unicode code points, on exit, length of output array with Unicode code
points.

maxucs4len : maximum length of input/output array.

16

Chapter 5. Stringprep Functions

flags : stringprep profile flags, or 0.

profile : pointer to stringprep profile to use.

Prepare the input UCS-4 string according to the stringprep profile, and write back the result to the input string.

The input is not required to be zero terminatecsé [len] = 0). The output will not be zero terminated unless
ucs4 [len 1= 0. Instead, sestringprep_4zi() if your input is zero terminated or if you want the output to be.

Since the stringprep operation can expand the stnnagucs4len indicate how large the buffer holding the
string is. This function will not read or write to code points outside that size.

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile contain the instructions to perform. Your application can define new profiles, possibly re-using the
generic stringprep tables that always will be part of the library, or use one of the currently supported profiles.

Return valueReturnsSTRINGPREP _OKff successful, or an error code.

int stringprep_4zi (uint32_t *ucs4 , size_tmaxucsdlen , Stringprep_profile_flagags , const
Stringprep_profile orofile) ucs4 : input/output array with zero terminated string to prepare.

maxucsdlen : maximum length of input/output array.

flags : stringprep profile flags, or O.

profile : pointer to stringprep profile to use.

Prepare the input zero terminated UCS-4 string according to the stringprep profile, and write back the result to
the input string.

Since the stringprep operation can expand the stnragucs4len indicate how large the buffer holding the
string is. This function will not read or write to code points outside that size.

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile contain the instructions to perform. Your application can define new profiles, possibly re-using the
generic stringprep tables that always will be part of the library, or use one of the currently supported profiles.

Return valueReturnsSTRINGPREP_OKff successful, or an error code.

17

Chapter 5. Stringprep Functions

int stringprep (char *in , size_tmaxlen , Stringprep_profile_flagags , const Stringprep_profile *
profile) in :input/ouput array with string to prepare.

maxlen : maximum length of input/output array.

flags : stringprep profile flags, or 0.

profile : pointer to stringprep profile to use.

Prepare the input zero terminated UTF-8 string according to the stringprep profile, and write back the result to
the input string.

Note that you must convert strings entered in the systems locale into UTF-8 before using this function, see
stringprep_locale_to_utf8()

Since the stringprep operation can expand the striraglen indicate how large the buffer holding the string is.
This function will not read or write to characters outside that size.

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile contain the instructions to perform. Your application can define new profiles, possibly re-using the
generic stringprep tables that always will be part of the library, or use one of the currently supported profiles.

Return valueReturnsSTRINGPREP_OKff successful, or an error code.

int stringprep_profile (const char %in , char ** out , const char *profile , Stringprep_profile_flags
flags)in :input array with UTF-8 string to prepare.

out : output variable with pointer to newly allocate string.

profile : name of stringprep profile to use.

flags : stringprep profile flags, or O.

Prepare the input zero terminated UTF-8 string according to the stringprep profile, and return the result in a
newly allocated variable.

Note that you must convert strings entered in the systems locale into UTF-8 before using this function, see
stringprep_locale_to_utf8()

The outpubut variable must be deallocated by the caller.

18

Chapter 5. Stringprep Functions

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile specifies the name of the stringprep profile to use. It must be one of the internally supported
stringprep profiles.

Return valueReturnsSTRINGPREP _OKff successful, or an error code.

5.6. Stringprep Profile Macros

int stringprep_nameprep_no_unassigned (char *in , int maxlen) in : input/ouput array with string to
prepare.

maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the nameprep profile. The AllowUnassigned flag is false, use
stringprep_nameprep for true AllowUnassigned. Returns 0 iff successful, or an error code.

int stringprep_iscsi (char *in , intmaxlen) in : input/ouput array with string to prepare.
maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft iISCSI stringprep profile. Returns 0 iff successful, or an
error code.

int stringprep_kerberos5 (char *in , intmaxlen) in : input/ouput array with string to prepare.
maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft Kerberos5 stringprep profile. Returns 0 iff successful, or an
error code.

int stringprep_plain (char *in , intmaxlen) in : input/ouput array with string to prepare.
maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft SASL ANONYMOUS profile. Returns 0 iff successful, or
an error code.

int stringprep_xmpp_nodeprep (char *in , int maxlen) in : input/ouput array with string to prepare.

maxlen : maximum length of input/output array.

19

Chapter 5. Stringprep Functions

Prepare the input UTF-8 string according to the draft XMPP node identifier profile. Returns 0 iff successful, or
an error code.

int stringprep_xmpp_resourceprep (char *in , int maxlen) in : input/ouput array with string to prepare.

maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP resource identifier profile. Returns 0 iff successful,
or an error code.

20

Chapter 6. Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with Internationalized Domain
Names in Applications. It uniquely and reversibly transforms a Unicode string into an ASCII string. ASCII
characters in the Unicode string are represented literally, and non-ASCII characters are represented by ASCII
characters that are allowed in host name labels (letters, digits, and hyphens). A general algorithm called
Bootstring allows a string of basic code points to uniquely represent any string of code points drawn from a
larger set. Punycode is an instance of Bootstring that uses particular parameter values, appropriate for IDNA.

6.1. Header filepunycode.h

To use the functions explained in this chapter, you need to include theifiyeode.h using:

#include <punycode.h >

6.2. Return Codes

All functions return a code of theunycode_status ~ enumerated type:

Punycode_statuBUNYCODE_SUCCESS =Smuccessful operation. This value is guaranteed to always be zero,
the remaining ones are only guaranteed to hold non-zero values, for logical comparison purposes.

Punycode_statuBUNYCODE_BAD_INPUMput is invalid.
Punycode_statuBUNYCODE_BIG_OUTPWutput would exceed the space provided.

Punycode_statuBUNYCODE_OVERFL@WguUt needs wider integers to process.

6.3. Unicode Code Point Type

The punycode function uses a special type to denote Unicode code points. It is guaranteed to always be a 32 bit
unsigned integer.

uint32_tpunycode_uint A unsigned integer that hold Unicode code points.

21

Chapter 6. Punycode Functions

6.4. Core Functions

Note that the current implementation will fail if theput_length exceed 4294967295 (the size of
punycode_uint). This restriction may be removed in the future. Meanwhile applications are encouraged to not
depend on this problem, and useeof to initialize input_length andoutput_length

The functions provided are the following two entry points:

int punycode_encode (Size_tinput_length , const punycode_uint fhput , const unsigned char []
case_flags , size_t*output_length , char [Joutput) input_length : The number of code points in
theinput array and the number of flags in these_flags array.

input : An array of code points. They are presumed to be Unicode code points, but that is not strictly
REQUIRED. The array contains code points, not code units. UTF-16 uses code units D800 through DFFF to
refer to code points 10000..10FFFF. The code points D800..DFFF do not occur in any valid Unicode string. The
code points that can occur in Unicode strings (0..D7FF and E000..10FFFF) are also called Unicode scalar values.

case_flags : A NULLpointer or an array of boolean values parallel toitipait array. Nonzero (true,

flagged) suggests that the corresponding Unicode character be forced to uppercase after being decoded (if
possible), and zero (false, unflagged) suggests that it be forced to lowercase (if possible). ASCII code points
(0..7F) are encoded literally, except that ASCII letters are forced to uppercase or lowercase according to the
corresponding case flags.cise flags is aNULL pointer then ASCII letters are left as they are, and other
code points are treated as unflagged.

output_length : The caller passes in the maximum number of ASCII code points that it can receive. On
successful return it will contain the number of ASCII code points actually output.

output : An array of ASCII code points. It is *not* null-terminated; it will contain zeros if and only if the
input contains zeros. (Of course the caller can leave room for a terminator and add one if needed.)

Converts a sequence of code points (presumed to be Unicode code points) to Punycode.

Return valueThe return value can be any of the punycode_status values defined above except

punycode_bad_input . If not punycode_success ,thenoutput_size andoutput might contain
garbage.
int punycode_decode (size_tinput_length , const char [jnput , size_t *output_length

punycode_uint [putput , unsigned char [tase_flags) input_length : The number of ASCII code
points in theinput array.

input : An array of ASCII code points (0..7F).

output_length : The caller passes in the maximum number of code points that it can receive iotahe
array (which is also the maximum number of flags that it can receive intcetiee flags array, if
case_flags is not aNULL pointer). On successful return it will contain the number of code points actually

22

Chapter 6. Punycode Functions

output (which is also the number of flags actually output, if case_flags is not a null pointer). The decoder will
never need to output more code points than the number of ASCII code points in the input, because of the way the
encoding is defined. The number of code points output cannot exceed the maximum possible value of a
punycode_uint, even if the suppliedtput_length is greater than that.

output : An array of code points like the input argumentpofiycode_encode() (see above).

case_flags : A NULLpointer (if the flags are not needed by the caller) or an array of boolean values parallel

to theoutput array. Nonzero (true, flagged) suggests that the corresponding Unicode character be forced to
uppercase by the caller (if possible), and zero (false, unflagged) suggests that it be forced to lowercase (if
possible). ASCII code points (0..7F) are output already in the proper case, but their flags will be set appropriately
so that applying the flags would be harmless.

Converts Punycode to a sequence of code points (presumed to be Unicode code points).

Return valueThe return value can be any of the punycode_status values defined above. If not
punycode_success |, thenoutput_length , output , andcase_flags might contain garbage.

23

Chapter 7. IDNA Functions

Until now, there has been no standard method for domain names to use characters outside the ASCII repertoire.
The IDNA document defines internationalized domain names (IDNs) and a mechanism called IDNA for

handling them in a standard fashion. IDNs use characters drawn from a large repertoire (Unicode), but IDNA
allows the non-ASCII characters to be represented using only the ASCII characters already allowed in so-called
host names today. This backward-compatible representation is required in existing protocols like DNS, so that
IDNs can be introduced with no changes to the existing infrastructure. IDNA is only meant for processing
domain names, not free text.

7.1. Header fileidna.h

To use the functions explained in this chapter, you need to include thérfilé using:

#include <idna.h >

7.2. Return Codes

All functions return a exit code:

Idna_rcIDNA_SUCCESS = Buccessful operation. This value is guaranteed to always be zero, the remaining
ones are only guaranteed to hold non-zero values, for logical comparison purposes.

Idna_rcIDNA_STRINGPREP_ERRORTrror during string preparation.
Idna_rcIDNA_PUNYCODE_ERRCRror during punycode operation.

Idna_rcIDNA_CONTAINS_LDH-or IDNA_USE_STD3_ASCIl_RULES, indicate that the string contains LDH
ASCII characters.

Idna_rcIDNA_CONTAINS_MINUSFor IDNA_USE_STD3_ASCII_RULES, indicate that the string contains a
leading or trailing hyphen-minus (U+002D).

Idna_rcIDNA_INVALID_LENGTH The final output string is not within the (inclusive) range 1 to 63 characters.
Idna_rcIDNA_NO_ACE_PREFIXThe string does not contain the ACE prefix (for ToUnicode).

Idna_rcIDNA_ROUNDTRIP_VERIFY_ERRORhe ToASCII operation on output string does not equal the input.

24

Chapter 7. IDNA Functions

Idna_rcIDNA_CONTAINS_ACE_PREFIXThe input contains the ACE prefix (for TOASCII).
Idna_rcIDNA_ICONV_ERRORCould not convert string in locale encoding.

Idna_rcIDNA_MALLOC_ERRORould not allocate buffer (this is typically a fatal error).

7.3. Control Flags

The IDNAflags parameter can take on the following values, or a bit-wise inclusive or of any subset of the
parameters:

Idna_flagaDNA_ALLOW_UNASSIGNEBIlow unassigned Unicode code points.

Idna_flagaDNA_USE_STD3_ASCII_RULES Check output to make sure it is a STD3 conforming host name.

7.4. Prefix String

#definelDNA_ACE_PREFIX String with the official IDNA prefixxn-- .

7.5. Core Functions

The idea behind the IDNA function names are as followsidhe to_ascii_4i and

idna_to_unicode_44i functions are the core IDNA primitives. Theindicate that the function takes UCS-4
strings (i.e., Unicode code points encoded in a 32-bit unsigned integer type) of the specified length. The
indicate that the data is written “inline” into the buffer. This means the caller is responsible for allocating (and
deallocating) the string, and providing the library with the allocated length of the string. The output length is
written in the output length variable. The remaining functions all contair tihdicator, which means the strings
are zero terminated. All output strings are allocated by the library, and must be deallocated by the cadler. The
indicator again means that the string is UCS-4,&heeans the strings are UTF-8 and thimdicator means the
strings are encoded in the encoding used by the current locale.

The functions provided are the following entry points:

int idna_to_ascii_4i (const uint32_t %in , size_tinlen , char *out , intflags)in : input array with
unicode code points.

inlen :length of input array with unicode code points.

out : output zero terminated string that must have room for at least 63 characters plus the terminating zero.

25

Chapter 7. IDNA Functions

flags :IDNAflags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

The ToASCII operation takes a sequence of Unicode code points that make up one label and transforms it into a
sequence of code points in the ASCII range (0..7F). If TOASCII succeeds, the original sequence and the resulting
sequence are equivalent labels.

It is important to note that the TOASCII operation can fail. TOASCII fails if any step of it fails. If any step of the
ToASCII operation fails on any label in a domain name, that domain name MUST NOT be used as an
internationalized domain name. The method for deadling with this failure is application-specific.

The inputs to TOASCII are a sequence of code points, the AllowUnassigned flag, and the UseSTD3ASCIIRules
flag. The output of TOASCII is either a sequence of ASCII code points or a failure condition.

ToASCII never alters a sequence of code points that are all in the ASCII range to begin with (although it could
fail). Applying the ToASCII operation multiple times has exactly the same effect as applying it just once.

Return valueReturns 0 on success, or an error code.

intidna_to_unicode_44i (const uint32_t %in , size_tinlen , uint32_t *out , size_t *outlen ,int
flags) in :input array with unicode code points.

inlen :length of input array with unicode code points.

out : output array with unicode code points.

outlen :on input, maximum size of output array with unicode code points, on exit, actual size of output array
with unicode code points.

flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

The ToUnicode operation takes a sequence of Unicode code points that make up one label and returns a
sequence of Unicode code points. If the input sequence is a label in ACE form, then the result is an equivalent
internationalized label that is not in ACE form, otherwise the original sequence is returned unaltered.

ToUnicode never fails. If any step fails, then the original input sequence is returned immediately in that step.

The ToUnicode output never contains more code points than its input. Note that the number of octets needed to
represent a sequence of code points depends on the particular character encoding used.

The inputs to ToUnicode are a sequence of code points, the AllowUnassigned flag, and the
UseSTD3ASCIIRules flag. The output of ToUnicode is always a sequence of Unicode code points.

26

Chapter 7. IDNA Functions

Return valueReturns error condition, but it must only be used for debugging purposes. The output buffer is
always guaranteed to contain the correct data according to the specification (sans malloc induced errors). NB!
This means that you normally ignore the return code from this function, as checking it means breaking the
standard.

7.6. Simplified TOASCII Interface

int idna_to_ascii_4z (const uint32_t input , char ** output ,intflags)input :zero terminated input
Unicode string.

output : pointer to newly allocated output string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert UCS-4 domain name to ASCII string. The domain name may contain several labels, separated by dots.
The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

intidna_to_ascii_8z (const char input , char ** output , intflags)input :zero terminated input
UTF-8 string.

output : pointer to newly allocated output string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert UTF-8 domain name to ASCII string. The domain name may contain several labels, separated by dots.
The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_ascii_lz (const char input , char ** output , intflags)input :zero terminated input
UTF-8 string.

output : pointer to newly allocated output string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert domain name in the locale’s encoding to ASCII string. The domain name may contain several labels,
separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

27

Chapter 7. IDNA Functions

7.7. Simplified ToUnicode Interface

int idna_to_unicode_4z4z (const uint32_t input , uint32_t ** output , intflags) input
zero-terminated Unicode string.

output : pointer to newly allocated output Unicode string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3 ASCIl_RULES.

Convert possibly ACE encoded domain name in UCS-4 format into a UCS-4 string. The domain name may
contain several labels, separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_8z4z (const char input , uint32_t ** output , intflags)input :zero-terminated
UTF-8 string.

output : pointer to newly allocated output Unicode string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

Convert possibly ACE encoded domain name in UTF-8 format into a UCS-4 string. The domain name may
contain several labels, separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_8z8z (const char input , char ** output , intflags)input :zero-terminated
UTF-8 string.

output : pointer to newly allocated output UTF-8 string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert possibly ACE encoded domain name in UTF-8 format into a UTF-8 string. The domain name may
contain several labels, separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_8zlz (const char *input , char ** output , intflags)input :zero-terminated
UTF-8 string.

output : pointer to newly allocated output string encoded in the current locale’s character set.

28

Chapter 7. IDNA Functions

flags :IDNAflags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

Convert possibly ACE encoded domain name in UTF-8 format into a string encoded in the current locale’s
character set. The domain name may contain several labels, separated by dots. The output buffer must be
deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_lzlz (const char input , char ** output , intflags)input :zero-terminated
string encoded in the current locale’s character set.

output : pointer to newly allocated output string encoded in the current locale’s c