GNU SASL

Simple Authentication and Security Layer for the GNU system
for version 0.2.0, 7 November 2004

Simon Josefsson

This manual is last updated 7 November 2004 for version 0.2.0 of GNU SASL.
Copyright (©) 2002, 2003, 2004 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with the Invariant Sections being
“Commercial Support”, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Introduction.............oiiiiinnenennn. 1
1.1 Getting Started 1
1.2 Featureso 2
1.3 SASL OVeIrVIEW . ..ottt e e 2
1.4 Supported Platforms 3
1.5 Commercial Support............ .. 5
1.6 Downloading and Installing 5
1.7 Bug Reports. ... 6
1.8 Contributingo 6

2 Preparation, 8
2.1 Header 8
2.2 Initialization 8
2.3 Version Check. 10
2.4 Building the source........ i 10
2.5 Autoconf tests 11

2.5.1 Autoconf test via ‘pkg-config’ 11
2.5.2 Standalone Autoconf test using Libtool.................. 11

3 Using the Library......................... 13
3.1 Choosing a mechanism. 17
3.2 Usingacallback.......... 18

4 Properties...........coiiiiiiriiiiiinnn.. 20

5 Mechanismsoviiiiiiininnnenenn. 22
5.1 The EXTERNAL mechanism 22
5.2 The ANONYMOUS mechanismccooveieieinenno... 22
5.3 The PLAIN mechanismouiiniuiaain.. 23
5.4 The LOGIN mechanism. 23
5.5 The CRAM-MD5 mechaniSm.ouuiiinnn. ... 23
5.6 The DIGEST-MD5 mechanismoiiiii... 24
5.7 The NTLM mechanism 24
5.8 The SECURID mechanism 24
5.9 The GSSAPI mechaniSm. 25
5.10 The KERBEROS_V5 mechanism........................... 25

6 Global Functionsccivv.... 26

7 Callback Functions.coovieeeen... 28

8 Property Functions 30
9 Session Functions......................... 32
10 Utilitiesttt i i, 34
11 Error Handling.......................... 37
11.1 Error values 37
11.2 Error stringS.o 40
12 Examplesciiiiiiiiiee... 41
121 Example 1. ... 41
12.2 Example 2. ... 43
12.3 Example 3. ... 46
124 Example 4. ... 49
13 Acknowledgements 53
14 Invokinggsasl........................... 54
Appendix A Protocol Clarifications 57
A.1 Server-side use of SASLPrep in CRAM-MD5................. 57
Appendix B OIld Functions 58
B.1 Obsolete callback function prototypes 70
Appendix C Copying This Manual 76
C.1 GNU Free Documentation License 76
C.1.1 ADDENDUM: How to use this License for your documents

.. 82
Concept Indexcciiiiiiiiiiin... 83

ii

Chapter 1: Introduction 1

1 Introduction

GNU SASL is an implementation of the Simple Authentication and Security Layer frame-
work and a few common SASL mechanisms. SASL is used by network servers (e.g., IMAP,
SMTP) to request authentication from clients, and in clients to authenticate against servers.

GNU SASL contains of a library (‘libgsasl’), a command line utility (‘gsasl’) to access
the library from the shell, and a manual. The library includes support for the framework

(with authentication functions and application data privacy and integrity functions) and at
least partial support for the CRAM-MD5, EXTERNAL, GSSAPI, ANONYMOUS, PLAIN,
SECURID, DIGEST-MD5, LOGIN, and NTLM mechanisms.

The library is easily ported because it does not do network communication by itself,
but rather leaves it up to the calling application. The library is flexible with regards to
the authorization infrastructure used, as it utilize a callback into the application to decide
whether a user is authorized or not.

GNU SASL is developed for the GNU/Linux system, but runs on over 20 platforms
including most major Unix platforms and Windows, and many kind of devices including
iPAQ handhelds and S/390 mainframes.

GNU SASL is written in pure ANSI C89 to be portable to embedded and otherwise
limited platforms. The entire library, with full support for ANONYMOUS, EXTERNAL,
PLAIN, LOGIN and CRAM-MD5, and the front-end that support client and server mode,
and the IMAP and SMTP protocols, fits in under 60kb on an Intel x86 platform, without
any modifications to the code. (This figure was accurate as of version 0.0.13.)

The library is licensed under the GNU Lesser General Public License, and the command-
line interface, self-tests and examples are licensed under the GNU General Public License.

—_ - = R

, N € = === > ANONYMOUS

{ GNU SASL

I | Function Library API € = = = = =» EXTERNAL
Calls

| I—)

gsasl_init () € PLAIN

| gsasl_callback_set ()

| € = = = = > CRAM-MD5

|

|

|

|

|

|

|

| gsasl_client_start ()
|

|

|

Application

gsasl_step () € - - - - -p DIGEST-MD5
Callback gsasl_finish () € === = GSSAPI
gsasl_done ()
/ D
A s

—_ = = | S —

Illustration 1.1: Logical overview showing how applications use authentication mecha-
nisms through an abstract interface.

1.1 Getting Started

This manual documents the GNU SASL Library programming interface. All functions and
data types provided by the library are explained.

Chapter 1: Introduction 2

The reader is assumed to possess basic familiarity with SASL and network programming
in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features
GNU SASL might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License. The library can even be distributed under the GNU
Lesser General Public License.

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallel.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows. The
library itself should be portable to any C89 system, not even POSIX is required.

Note that the library do not implement any policy to decide whether a certain user is
“authenticated” or “authorized” or not. Rather, it uses a callback into the application to
answer these questions.

1.3 SASL Overview

This section describes SASL from a protocol point of view.

The Simple Authentication and Security Layer (SASL) is a method for adding authen-
tication support to connection-based protocols. A protocol includes a command for identi-
fying and authenticating a user to a server and for optionally negotiating a security layer
for subsequent protocol interactions.

The command has a required argument identifying a SASL mechanism. SASL mech-
anisms are named by strings, from 1 to 20 characters in length, consisting of upper-case
letters, digits, hyphens, and/or underscores.

If a server supports the requested mechanism, it initiates an authentication protocol
exchange. This consists of a series of server challenges and client responses that are specific
to the requested mechanism. The challenges and responses are defined by the mechanisms
as binary tokens of arbitrary length. The protocol’s profile then specifies how these binary
tokens are then encoded for transfer over the connection.

Chapter 1: Introduction 3

After receiving the authentication command or any client response, a server may issue a
challenge, indicate failure, or indicate completion. The protocol’s profile specifies how the
server indicates which of the above it is doing.

After receiving a challenge, a client may issue a response or abort the exchange. The
protocol’s profile specifies how the client indicates which of the above it is doing.

During the authentication protocol exchange, the mechanism performs authentication,
transmits an authorization identity (frequently known as a userid) from the client to server,
and negotiates the use of a mechanism-specific security layer. If the use of a security layer
is agreed upon, then the mechanism must also define or negotiate the maximum cipher-text
buffer size that each side is able to receive.

The transmitted authorization identity may be different than the identity in the client’s
authentication credentials. This permits agents such as proxy servers to authenticate us-
ing their own credentials, yet request the access privileges of the identity for which they
are proxying. With any mechanism, transmitting an authorization identity of the empty
string directs the server to derive an authorization identity from the client’s authentication
credentials.

If use of a security layer is negotiated, it is applied to all subsequent data sent over the
connection. The security layer takes effect immediately following the last response of the
authentication exchange for data sent by the client and the completion indication for data
sent by the server. Once the security layer is in effect, the protocol stream is processed by
the security layer into buffers of cipher-text. Each buffer is transferred over the connection
as a stream of octets prepended with a four octet field in network byte order that represents
the length of the following buffer. The length of the cipher-text buffer must be no larger
than the maximum size that was defined or negotiated by the other side.

1.4 Supported Platforms

GNU SASL has at some point in time been tested on the following platforms.

1. Debian GNU/Linux 3.0 (Woody)
GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,
ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips-unknown-linux-gnu,
mipsel-unknown-linux—-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

Chapter 1: Introduction 4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-1linux-gnu.
RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. i686-pc-linux-gnu.
Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.
Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.
IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.
AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. 1686-pc-cygwin.

HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

SUN Solaris 2.9

Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.
NetBSD 1.6

GCC 2953 and GNU Make. alpha-unknown-netbsdl.6, 1i386-unknown-
netbsdelfl.6.

OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

FreeBSD 4.7

GCC 2954 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-
freebsd4.7.

Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you port GNU SASL to a new platform, please report it to the author so this list can

be updated.

Chapter 1: Introduction 5

1.5 Commercial Support
Commercial support is available for users of GNU SASL. The kind of support that can be
purchased may include:

e Implement new features. Such as a new SASL mechanism.

e Port GNU SASL to new platforms. This could include porting to an embedded plat-
forms that may need memory or size optimization.

e Integrating SASL as a security environment in your existing project.
e System design of components related to SASL.

If you are interested, please write to:

Simon Josefsson Datakonsult
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU SASL and would like to be mentioned
here, contact the author (see Section 1.7 [Bug Reports], page 6).

1.6 Downloading and Installing

The package can be downloaded from several places, including:
http://josefsson.org/gsasl/releases/

The latest version is stored in a file, e.g., ‘gsas1-0.2.0.tar.gz’ where the ‘0.2.0" value
is the highest version number in the directory.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q http://josefsson.org/gsasl/releases/gsasl-0.2.0.tar.gz
$ tar xfz gsasl-0.2.0.tar.gz

$ cd gsasl-0.2.0/

$./configure

$ make
$ make install

After that gsasl should be properly installed and ready for use.
A few configure options may be relevant, summarized in the table.

--disable-client

--disable-server
If your target system require a minimal implementation, you may wish to disable
the client or the server part of the code. This do not remove symbols from the

http://josefsson.org/gsasl/releases/

Chapter 1: Introduction 6

library, so if you attempt to call an application that uses server functions in a
library built with --disable-server, the function will return an error code.

--disable-anonymous
--disable-external
--disable-plain
--disable-login
--disable-securid
--disable-ntlm
--disable-cram-mdb5
--disable-digest-mdb5
--disable-gssapi
--disable-kerberos_vb
Disable individual mechanisms (see Chapter 5 [Mechanisms|, page 22).

--without-stringprep
Disable internationalized string processing. Note that this will result in a SASL
library that is only compatible with RFC 2222.

For the complete list, refer to the output from configure --help.

1.7 Bug Reports

If you think you have found a bug in GNU SASL, please investigate it and report it.

e Please make sure that the bug is really in GNU SASL, and preferably also check that
it hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gsasl@gnu.org’

1.8 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.7 [Bug
Reports], page 6). There are some things that you can do to increase the chances for it to
be included in the official package.

Chapter 1: Introduction 7

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.
For code contributions, a number of style guides will help you:
e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see (undefined) [top], page (undefined))
before submitting your work.
e Use the unified diff format ‘diff -u’.

e Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeL.og and NEWS entries, where appropriate.

Chapter 2: Preparation 8

2 Preparation

To use GNU SASL, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of this
chapter, it is described how the library is initialized, and how the requirements of the library
are verified.

A faster way to find out how to adapt your application for use with GNU SASL may be
to look at the examples at the end of this manual (see Chapter 12 [Examples], page 41).

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘gsasl.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <gsasl.h>

The name space is gsasl_x for function names, Gsasl* for data types and GSASL_x*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

2.2 Initialization

The library must be initialized before it can be used. The library is initialized by calling
gsasl_init (see Chapter 6 [Global Functions], page 26). The resources allocated by the
initialization process can be released if the application no longer has a need to call ‘Libgsasl’
functions, this is done by calling gsasl_done. For example:

int
main (int argc, char *argv[])
{

Gsasl_ctx *ctx = NULL;

int rc;

rc = gsasl_init (&ctx);
if (rc '= GSASL_OK)
{
printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));
return 1;

}

In order to make error messages from gsasl_strerror be translated (see section “Top”
in GNU Gettext) the application must set the current locale using setlocale before calling
gsasl_init. For example:

int
main (int argc, char *argv[])
{

Gsasl_ctx *ctx = NULL;

Chapter 2: Preparation 9

int rc;
setlocale (LC_ALL, "");

rc = gsasl_init (&ctx);
if (rc !'= GSASL_OK)
{
printf (gettext ("SASL initialization failure (%d): %s\n"),
rc, gsasl_strerror (rc));
return 1;

}

In order to take advantage of the secure memory features in Libgerypt!, you need to
initialize secure memory in your application, and for some platforms even make your appli-
cation setuid root. See the Libgcerypt documentation for more information. Example code
to initialize secure memory in your code:

#include <gcrypt.h>

int
main (int argc, char *argv[])
{

Gsasl_ctx *ctx = NULL;

int rc;

/* Check version of libgcrypt. */
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");

/* Allocate a pool of 16k secure memory. This also drops priviliges
on some systems. */
gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
{
printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));
return 1;

3

1 Note that GNU SASL can also use Nettle for the Crypto backend. Take care to verify that GNU SASL
really use Libgcrypt, if this is what you want.

Chapter 2: Preparation 10

If you do not do this, keying material will not be allocated in secure memory (which
for most application is not the biggest secure problem anyway). Note that the GNU SASL
Library has not been audited to make sure it only ever stores passwords or keys in secure
memory.

2.3 Version Check

It is often desirable to check that the version of the library used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

const char * gsasl_check_version (const char * req_version) [Function]
req_version: version string to compare with, or NULL

Check library version.

Return value: Check that the the version of the library is at minimum the one given
as a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

The normal way to use the function is to put something similar to the following early in
your main:

if (!gsasl_check_version (GSASL_VERSION))
{
printf ("gsasl_check_version failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
}

2.4 Building the source

If you want to compile a source file including the ‘gsasl.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
libgsasl. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config libgsasl --cflags®
Adding the output of ‘pkg-config libgsasl --cflags’ to the compilers command line
will ensure that the compiler can find the ‘gsasl.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--1ibs’ to pkg-config
libgsasl can be used. For convenience, this option also outputs all other options that are

Chapter 2: Preparation 11

required to link the program with the ‘libgsasl’ libarary (for instance, the ‘-1idn’ option).
The example shows how to link ‘foo.o” with the ‘libgsasl’ library to a program foo.

gcc -o foo foo.o ‘pkg-config libgsasl --1libs‘
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc -o foo foo.c ‘pkg-config libgsasl --cflags --libs®

2.5 Autoconf tests

If you work on a project that uses Autoconf (see (undefined) [top|, page (undefined)) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate the GNU SASL Library into your Autoconf
based package. The preferred approach, is to use Libtool in your project, and use the
normal Autoconf header file and library tests.

2.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Libgsasl. The following illustrate this scenario.

AC_ARG_ENABLE (gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsal" != "no" ; then
PKG_CHECK_MODULES (GSASL, libgsasl >= 0.2.0,
[gsasl=yes],
[gsasl=no])
if test "$gsasl" != "yes" ; then
sal=no
AC_MSG_WARN([Cannot find GNU SASL, disabling])
else
gsasl=yes
AC_DEFINE(USE_GSASL, 1, [Define to 1 if you want GNU SASL.])
fi
fi
AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT ($gsasl)

2.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see (undefined) [top], page (undefined)), you can use the normal
Autoconf tests to find Libgsasl and rely on the Libtool dependency tracking to include the
proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER(gsasl.h,
AC_CHECK_LIB(gsasl, gsasl_check_version,
[gsasl=yes AC_SUBST(GSASL_LIBS, -lgsasl)],
gsasl=no),

gsasl=no)

Chapter 2: Preparation

AC_ARG_ENABLE (gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)

if test "$gsasl" != "no" ; then

AC_DEFINE(USE_SASL, 1, [Define to 1 if you want GNU SASL.])
else

AC_MSG_WARN([Cannot find GNU SASL, diabling])

fi

AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT ($gsasl)

12

Chapter 3: Using the Library 13

3 Using the Library

Your application’s use of the library can be roughly modeled into the following steps: ini-
tialize the library, optionally specify the callback, perform the authentication, and finally
clean up. The following image illustrate this.

Control flow inside application
Process manager:

Initialize library: Specify callback: Multiplex Cleanu
= v > gsasl_callback_set (ctx, myfunc); several clients... > P
gsasl_init(&ctx); -OR- gsasl|_done (ctx);

Accept incoming
server sessions...

]

fork(),
pthread_create(),

The third step may look the most complex, but for a simple client it will actually not
involve any code. If your application need to handle several concurrent clients, or if it is a
server that need to serve many clients simultaneous, things do get a bit more complicated.

For illustration, we will write a simple client. Writing a server would be similar, the only
difference is that, later on, instead of supplying username or passwords, you need to decide
whether someone should be allowed to log in or not. The code for what we have discussed
so far make up our main function in our client (see Section 12.1 [Example 1], page 41):

int main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

int rc;

if ((rc = gsasl_init (&ctx)) !'= GSASL_OK)
{
printf ("Cannot initialize libgsasl (%d): %s",
rc, gsasl_strerror (zrc));
return 1;

}
client (ctx);
gsasl_done (ctx);

return O;
}
Here, the call to the function client correspond to the third step in the image above.
For a more complicated application, that have several clients running simultaneous,
instead of simply calling client, it may have created new threads for each session, and call
client within each thread. The library is thread safe.

Chapter 3: Using the Library 14

An actual authentication session is more complicated than what we have seen so far.
The steps that make up it are: decide which mechanism to use, start the session, optionally
specify the callback, optionally set any properties, perform the authentication loop, and
clean up. Naturally, your application will start to talk its own protocol (e.g., SMTP or
IMAP) after these steps have concluded.

The authentication loop is based on sending tokens (typically short messages encoded
in base 64) back and forth between the client and server. It continue until authentication
succeeds or there is an error. The format of the data to transfer, the number of iterations
in the loop, and other details are specified by each mechanism. The goal of the library is
to isolate your application from the details of all different mechanisms.

Note that the library do not send data to the server itself, but return it in an buffer.
You must send it to the server yourself, according to an application protocol profile. For
example, the SASL application protocol profile for SMTP is described in RFC 2554.

The following image illustrate the steps we have been talking about.

Control flow
for one SASL session

fork(),
pthread_create(),

Decide which mechanism to use:
mech = my_chose_mechanism();

\

Start new authentication process:
gsasl_client_start (ctx, mech, &session);
-OR-
gsasl_server_start (ctx, mech, &session);

«

Optionally set properties:
gsasl_property_set (session, GSASL_AUTHZID, "joe");

Read token from peer:
readtoken (&in);
-OR-
in = NULL

~

One step of the authentication:
rc = gsasl_step64 (session, in, &out);

~

Send token to peer:
rc == GSASL_NEEDS_MORE sendtoken (out);

Need
another
token?

rc = GSASL_OK

Authentication
finished?

rc = GSASL_NEEDS_MORE

Abort rc == GSASL_OK
|_finish ion); - L
. " gsas._ |n|s" (session) . Finish authentication process:
printf ("Failure: %s\n", gsasl_strerror (rc)); . .
gsasl_finish (session);

— P

<«

Authenticated protocol exchange...
For example SMTP or IMAP.

We will now show the implementation of the client function used before.

void client (Gsasl *ctx)

{

Gsasl_session *session;

Chapter 3: Using the Library 15

const char *mech = "PLAIN";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) !'= GSASL_0K)
{
printf ("Cannot initialize client (%d): %s\n",
rc, gsasl_strerror (rc));
return;

}

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");

gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (ctx, session);

/* Cleanup. */
gsasl_finish (session);

}

This function is responsible for deciding which mechanism to use. In this case, the
‘PLAIN’ mechanism is hard coded, but you will see later how this can be made more flexible.
The function create a new session, store the username and password in the session handle,
then call another function client_authenticate to handle the authentication loop, and
end by cleaning up. Let’s continue with the implementation of client_authenticate.

void client_authenticate (Gsasl * ctx, Gsasl_session * session)

{
char buf [BUFSIZ] = "";
char *p;
int rc;

/* This loop mimic a protocol where the server get to send data
first. */

do

printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);

rc = gsasl_step64 (session, buf, &p);
if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)

{
printf ("Output:\n¥%s\n", p);

Chapter 3: Using the Library 16

free (p);
}
}
while (rc == GSASL_NEEDS_MORE) ;

printf ("\n");

if (rc '= GSASL_OK)
{
printf ("Authentication error (%d): %s\n",
rc, gsasl_strerror (rc));
return;

3

/* The client is done. Here you would typically check if the
server let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");
}

This last function need to be discussed in some detail. First, you should be aware that
there are two versions of this function, that differ in a subtle way. The version above (see
Section 12.2 [Example 2], page 43) is used for application profiles where the server send
data first. For some mechanisms, this may waste a roundtrip, because the server need
input from the client to proceed. Therefor, today the recommended approach is to permit
client to send data first (see Section 12.1 [Example 1], page 41). Which version you should
use depend on which application protocol you are implementing.

Further, you should realize that it is bad programming style to use a fixed size buffer.
On GNU systems, you may use the getline functions instead of fgets. However, in
practice, there are few mechanisms that use very large tokens. In typical configurations,
the mechanism with the largest tokens (GSSAPI) can use at least 500 bytes. A fixed buffer
size of 8192 bytes may thus be sufficient for now. But don’t say I didn’t warn you, when a
future mechanism doesn’t work in your application, because of a fixed size buffer.

The gsasl_step64 (and of course also gasl_step) return two non-error return codes.
GSASL_OK is used for success, indicating that the library consider the authentication finished.
That may include a successful server authentication, depending on the mechanism. You
must not let the client continue to the application protocol part unless you receive GSASL_
0K from these functions. In particular, don’t be fooled into believing authentication were
successful if the server reply “OK” but these function has failed with an error. The server
may have been hacked, and could be tricking you into sending confidential data, without
having successfully authenticated the server.

The non-error return code GSASL_NEEDS_MORE is used to signal to your application that
you should send the output token to the peer, and wait for a new token, and do another
iteration. If the server conclude the authentication process, with no data, you should call
gsasl_step64 (or gsasl_step) specifying a zero-length token.

If the functions (gsasl_step and gsasl_step64) return any non-error code, the content
of the output buffer is undefined. Otherwise, it is the callers responsibility to deallocate

Chapter 3: Using the Library 17

the buffer, by calling free. Note that in some situations, where the buffer is empty, NULL
is returned as the buffer value. You should treat this as an empty buffer.

3.1 Choosing a mechanism

Our earlier code was hard coded to use a specific mechanism. This is rarely a good idea.
Instead, it is recommended to select the best mechanism available from the list of mecha-
nism supported by the server. Note that without TLS or similar, the list may have been
maliciously altered, by an attacker. This means that you should abort if you cannot find
any mechanism that exceeds your minimum security level. There is a function gsasl_
client_suggest_mechanism (see Chapter 6 [Global Functions], page 26) that will try to
pick the “best” available mechanism from a list of mechanisms. Our simple interactive
example client (see Section 12.3 [Example 3|, page 46) include the following function to
decide which mechanism to use. Note that the code doesn’t blindly use what is returned
from gsasl_client_suggest_mechanism, but rather let some logic (in this case the user,
through an interactive query) decide which mechanism is acceptable.

const char *client_mechanism (Gsasl *ctx)

{
static char mech[GSASL_MAX_MECHANISM_SIZE + 1] = "";
char mechlist[BUFSIZ] = "";
const char *suggestion;
printf ("Enter list of mechanism that server support, separate by SPC:\n");
fgets (mechlist, sizeof (mechlist) - 1, stdin);
suggestion = gsasl_client_suggest_mechanism (ctx, mechlist);
if (suggestion)
printf ("Library suggest use of ‘%s’.\n", suggestion);
printf ("Enter mechanism to use:\n");
fgets (mech, sizeof (mech) - 1, stdin);
mech[strlen (mech) - 1] = ’\0’;
return mech;
+

When running this example code, it might look like in the following output.

Enter list of mechanism that server support, separate by SPC:
CRAM-MD5 DIGEST-MD5 GSSAPI FOO BAR

Library suggest use of ‘GSSAPI’.

Enter mechanism to use:

CRAM-MD5

Input base64 encoded data from server:

Zm5vemQ=

Output:

amFzIDkyY2UINWESMTM2ZTY4NzEyMTUyZTF jYmFmNjVkZjgx

If server accepted us, we’re done.

Chapter 3: Using the Library 18

3.2 Using a callback

Our earlier code specified the username and password before the authentication loop, as in:

gsasl_property_set (ctx, GSASL_AUTHID, "jas");
gsasl_property_set (ctx, GSASL_PASSWORD, "secret");

This may work for simple mechanisms, that only ever need an username and a password.
But some mechanism require more information, such as an authorization identity, a special
PIN or passcode, a realm, a hostname, a service name, or an anonymous identifier. Querying
the user for all that information, without knowing exactly which of it is really needed will
result in a poor user interface. The user should not have to input private information, if it
isn’t required.

The approach is a bad idea for another reason. What if the server abort the authenti-
cation process? Then your application have already queried the user for a username and
password. It would be better if you only asked the user for this information, annoying to
input, when it is known to be needed.

A better approach to this problem is to use a callback. Then the mechanism may query
your application whenever it need some information, like the username and password. It
will only do this at the precise step in the authentication when the information is actually
needed. Further, if the user abort, e.g., a password prompt, the mechanism is directly
informed of this (because it invoked the callback), and could recover somehow.

Our final example (see Section 12.4 [Example 4], page 49) specify a callback function,
inside main as below.

/* Set the callback handler for the library. */
gsasl_callback_set (ctx, callback);
The function itself is implemented as follows.
int callback (Gsasl * ctx, Gsasl_session * sctx, Gsasl_property prop)

{
char buf [BUFSIZ] = "";
int rc = GSASL_NO_CALLBACK;

/* Get user info from user. */
printf ("Callback invoked, for property %d.\n", prop);

switch (prop)
{
case GSASL_PASSCODE:
printf ("Enter passcode:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf [strlen (buf) - 1] = °\0’;

gsasl_property_set (sctx, GSASL_PASSCODE, buf);
rc = GSASL_OK;

break;

case GSASL_AUTHID:

Chapter 3: Using the Library 19

printf ("Enter username:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf [strlen (buf) - 1] = >\0’;

gsasl_property_set (sctx, GSASL_AUTHID, buf);
rc = GSASL_OK;
break;

default:
printf ("Unknown property! Don’t worry.\n");
break;

}

return rc;

}
Again, it is bad style to use a fixed size buffer. Mmm’kay.

Which properties you should handle is up to you. If you don’t know how to respond
to a certain property, simply return GSASL_NO_CALLBACK. The basic properties to support
are authentication identity (GSASL_AUTHID), authorization identity (GSASL_AUTHZID), and
password (GSASL_PASSWORD). See See Chapter 4 [Properties|, page 20, for the list of all
properties, and what your callback should (ideally) do for them, and which properties each
mechanism require in order to work.

Chapter 4: Properties 20

4

Properties

Properties with associated data:

GSASL_AUTHID

The authentication identity.

GSASL_AUTHZID

The authorization identity.

GSASL_PASSWORD

The password of the authentication identity.
GSASL_ANONYMOUS_TOKEN

The anonymous token. This is typically the email address of the user.
GSASL_SERVICE

The registered GSSAPI service name of the application service, e.g. “imap”. While
the names are registered for GSSAPI, other mechanisms such as DIGEST-MD5 may
also use this.

GSASL_HOSTNAME
Should be the local host name of the machine.
GSASL_GSSAPI_DISPLAY_NAME

Contain the GSSAPI “display name”, set by the server GSSAPI mechanism. Typically
you retrieve this property in your callback, when invoked for GSASL_VALIDATE_GSSAPI.

GSASL_PASSCODE

The SecurID passcode.

GSASL_PIN

The SecurID personal identification number (PIN).
GSASL_SUGGESTED_PIN

A SecurlID personal identification number (PIN) suggested by the server.

Abstract properties, used to trigger the callback, typically used in servers to validate

client credentials:

GSASL_VALIDATE_SIMPLE

You may retrieve GSASL_AUTHID, GSASL_AUTHZID and GSASL_PASSWORD and
use them to make an authentication and authorization decision.

GSASL_VALIDATE_EXTERNAL

Used by EXTERNAL mechanism on the server side to validate the client. The
GSASL_AUTHID will contain the authorization identity of the client.

GSASL_VALIDATE_ANONYMOUS

Used by ANONYMOUS mechanism on the server side to validate the client. The
GSASL_ANONYMOUS_TOKEN will contain token that identity the client.

GSASL_VALIDATE_GSSAPI

Used by the GSSAPI mechanism on the server side, to validate the client. You may
retrieve the authorization identity from GSASL_AUTHZID and the GSS-API display
name from GSASL_GSSAPI_DISPLAY_NAME.

Chapter 4: Properties 21

e GSASL_VALIDATE_SECURID
Used by SECURID mechanism on the server side to validate client. The
GSASL_AUTHID, GSASL_AUTHZID, GSASL_PASSCODE, and GSASL_PIN will be
set. It can return GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE
to ask the client to supply another passcode, and GSASL_SECURID_SERVER_NEED_NEW _PIN
to require the client to supply a new PIN code.

Chapter 5: Mechanisms 22

5 Mechanisms

Different SASL mechanisms have different requirements on the application using it. To
handle these differences the library can use a callback function into your application in
several different ways. Some mechanisms, such as ‘PLAIN’, are simple to explain and use.
The client callback query the user for a username and password. The server callback hand
the username and password into any local policy deciding authentication system (such as
‘/etc/passwd’ via PAM).

Mechanism such as ‘CRAM-MD5’ and ‘DIGEST-MD5’ uses hashed passwords. The client
callback behaviour is the same as for PLAIN. However, the server do not receive the plain
text password over the network but rather a hash of it. Existing policy deciding systems like
PAM cannot handle this, so the server callback for these mechanisms are more complicated.

Further, mechanisms like GSSAPI (Kerberos 5) assume a specific authentication system.
In theory this means that the SASL library would not need to interact with the application,
but rather call this specific authentication system directly. However, some callbacks are
supported anyway, to modify the behaviour of how the specific authentication system is
used (i.e., to handle “super-user” login as some other user).

Some mechanisms, like ‘EXTERNAL’ and ‘ANONYMOUS’ are entirely dependent on callbacks.

5.1 The EXTERNAL mechanism

The EXTERNAL mechanism is used to authenticate a user to a server based on out-of-band
authentication. EXTERNAL is typically used over TLS authenticated channels. Note that
in the server, you need to make sure that TLS actually authenticated the client successfully.
It is normally not sufficient that TLS is used, since they also support anonymous modes.

In the client, this mechanism is always enabled, and will send the GSASL_AUTHZID prop-
erty as the authorization name to the server, if the property is set. If the property is not
set, the empty authorization name is sent. You need not implement a callback.

In the server, this mechanism will invoke the GSASL_VALIDATE_EXTERNAL callback to
decide whether the client is authenticated and authorized to log in. Your callback can
retrieve the GSASL_AUTHZID property to inspect the requested authorization name from the
client.

5.2 The ANONYMOUS mechanism

The ANONYMOUS mechanism is used to “authenticate” clients to anonymous services;
or rather, just indicate that the client wishes to use the service anonymously. The client
sends a token, usually her email address, which serve the purpose of some trace information
suitable for log files. The token is not permitted to be empty.

In the client, this mechanism is always enabled, and will send the GSASL_ANONYMQOUS_
TOKEN property as the trace information to the server.

In the server, this mechanism will invoke the GSASL_VALIDATE_ANONYMOUS callback to
decide whether the client should be permitted to log in. Your callback can retrieve the
GSASL_ANONYMQOUS_TOKEN property to, for example, save it in a log file. The token is nor-
mally not used to decide whether the client should be permitted to log in or not.

Chapter 5: Mechanisms 23

5.3 The PLAIN mechanism

The PLAIN mechanism uses username and password to authenticate users. Two user names
are relevant. The first, the authentication identity, indicate the credential holder, i.e., whom
the provided password belongs to. The second, the authorization identity, is typically
empty, to indicate that the user requests to log on to the server as herself. However, if
the authorization identity is not empty, the server should decide whether the authenticated
user may log on as the authorization identity. Normally, only “super-user” accounts such
as ‘admin’ or similar should be allowed this.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties. If set, GSASL_AUTHZID will also be used.

In the server, the mechanism is always enabled. Two approaches to authenticate and
authorize the client is provided.

In the first approach, the server side of the mechanism will invoke the GSASL_VALIDATE_
SIMPLE callback property to decide whether the client should be accepted or not. The
callback may inspect the GSASL_AUTHID, GSASL_AUTHID, and GSASL_PASSWORD properties.

If the first approach fails (because, e.g., your callback return ‘GSASL_NO_CALLBACK’) the
mechanism will continue to query the application for a password, via the GSASL_PASSWORD
property. The password is then normalized using SASLprep and compared to the client
credential.

Which approach to use? If the passwords in your user database are stored in a prepared
form (using SASLPrep), the first approach will be faster. If you do not have prepared
passwords available, you must use the second approach, to make sure the password has
been prepared properly.

5.4 The LOGIN mechanism

The LOGIN mechanism is a non-standard mechanism, and is similar to the PLAIN mecha-
nism except that LOGIN lack the support for authorization identities. Always use PLAIN
instead of LOGIN in new applications.

The callback behaviour is the same as for PLAIN, except that GSASL_AUTHZID is not
used nor required, and that the server do not normalize the password using SASLprep.

5.5 The CRAM-MD5 mechanism

The CRAM-MD5 is a widely used, but officially deprecated (apparently in favor of DIGEST-
MD5), challenge-response mechanism that transfer hashed passwords instead of clear text
passwords. For insecure channels (e.g., when TLS is not used), it is safer than PLAIN. The
CRAM-MD5 mechanism do not support authorization identities; making the relationship
between PLAIN and LOGIN similar to the relationship between DIGEST-MD5 and CRAM-
MD5.

The disadvantage with hashed passwords is that the server cannot use normal authen-
tication infrastructures such as PAM, because the server must have access to the correct
password in order to validate an authentication attempt.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties.

Chapter 5: Mechanisms 24

In the server, the mechanism will invoke the GSASL_PASSWORD callback, which may use
the GSASL_AUTHID property to determine which users’ password should be used. The server
will then normalize the password, and compare the client response with a known correct
computed response, and accept the user accordingly.

See Section A.1 [Server-side use of SASLPrep in CRAM-MD5], page 57, for a clarification
on the interpretation of the CRAM-MD5 specification that this implementation rely on.

5.6 The DIGEST-MD5 mechanism

The DIGEST-MD5 mechanism is based on the same cryptographic primitive as CRAM-
MD5 (namely the challenge-response HMAC-MD5 system), but supports more features. For
example, authorization identities and data integrity and privacy protection are supported.
Like CRAM-MD5, only a hashed password is transfered. Consequently, DIGEST-MD5 need
access to (a possibly hashed) form of the correct password to verify the client response, which
make it impossible to use, e.g., PAM on the server side.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties. If set, GSASL_AUTHZID will also be used.

In the server, the mechanism will invoke the GSASL_PASSWORD callback, which may use
the GSASL_AUTHID property to determine which users’ password should be used. The server
will then normalize the password, and compare the client response with a known correct
computed response, and accept the user accordingly.

XXX: explain more about quality of service, maximum buffer size, etc.

5.7 The NTLM mechanism

The NTLM is a non-standard mechanism. Do not use it in new applications, and do not
expect it to be secure. Currently only the client side is supported.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties.

5.8 The SECURID mechanism

The SECURID mechanism uses authentication and authorization identity together with a
passcode from a hardware token to authenticate users.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSCODE properties. If set, GSASL_AUTHZID will also be used. If the server re-
quests it, the GSASL_PIN property is also required, and its callback may inspect the GSASL_
SUGGESTED_PIN property to discover a server-provided PIN to use.

In the server, this mechanism will invoke the GSASL_VALIDATE_SECURID callback. The
callback may inspect the GSASL_AUTHID, GSASL_AUTHZID, and GSASL_PASSCODE properties.
The callback can return GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE to ask for
another additional passcode from the client. The callback can return GSASL_SECURID_
SERVER_NEED_NEW_PIN to ask for a new PIN code from the client, in which case it may
also set the GSASL_SUGGESTED_PIN property to indicate a recommended new PIN. If the
callbacks has invoked again, after having returned GSASL_SECURID_SERVER_NEED_NEW_PIN,
it may also inspect the GSASL_PIN property, in addition to the other properties, to find out
the client selected PIN code.

Chapter 5: Mechanisms 25

5.9 The GSSAPI mechanism

GSS-API is a framework, similar to SASL, for authentication. The GSSAPI mechanism
only support the Kerberos 5 GSS-API mechanism, though. (A new SASL mechanism to
support non-Kerberos 5 GSS-API mechanisms may be supported in the future.)

In the client, the mechanism is enabled only if the user has acquired credentials (i.e.,
a ticket granting ticket), and require the GSASL_AUTHID, GSASL_SERVICE, and GSASL_
HOSTNAME properties.

In the server, the mechanism require the GSASL_SERVICE, and GSASL_HOSTNAME prop-
erties, and will invoke the GSASL_VALIDATE_GSSAPI callback in order to validate the user.
The callback may inspect the GSASL_AUTHZID and GSASL_GSSAPI_DISPLAY_NAME proper-
ties to decide whether to authorize the user. Note that authentication is performed by the
GSS-API library.

XXX: explain more about quality of service, maximum buffer size, etc.

5.10 The KERBEROS_V5 mechanism

The KERBEROS_V5 is an experimental mechanism, the protocol specification is available
on the GNU SASL homepage. It can operate in three modes, non-infrastructure mode,
infrastructure mode and proxied infrastructure mode. Currently only non-infrastructure
mode is supported.

In the non-infrastructure mode, it works as a superset of most features provided by
PLAIN, CRAM-MD5, DIGEST-MD5 and GSSAPI while at the same time building on
what is believed to be proven technology (the RFC 1510 network security system). In the
non-infrastructure mode, the client must specify (via callbacks) the name of the user, and
optionally the server name and realm. The server must be able to retrieve passwords given
the name of the user.

In the infrastructure mode (proxied or otherwise), it allows clients and servers to au-
thenticate via SASL in an RFC 1510 environment, using a trusted third party, a “Key
Distribution Central”. In the normal mode, clients aquire tickets out of band and then
invokes a one roundtrip AP-REQ and AP-REP exchange. In the proxied mode, which can
be used by clients without IP addresses or without connectivity to the KDC (e.g., when
the KDC is IPv4 and the client is IPV6-only), the client uses the server to proxy ticket re-
quests and finishes with the AP-REQ/AP-REP exchange. In infrastructure mode (proxied
or otherwise), the client nor server need to implement any callbacks (this will likely change
later, to allow a server to authorize users, similar to the GSSAPI callback).

XXX: update when implementation has matured

Chapter 6: Global Functions 26

6 Global Functions

int gsasl_init (Gsasl ** ctx) [Function]
ctx: pointer to libgsasl handle.

This functions initializes libgsasl. The handle pointed to by ctx is valid for use with
other libgsasl functions iff this function is successful. It also register all builtin SASL
mechanisms, using gsasl_register().

Return value: GSASL_OK iff successful, otherwise GSASL_MALLOC_ERROR.

void gsasl_done (Gsasl * ctx) [Function]
ctx: libgsasl handle.

This function destroys a libgsasl handle. The handle must not be used with other
libgsasl functions after this call.

int gsasl_client_mechlist (Gsasl * ctx, char ** out) [Function]
ctx: libgsasl handle.

out: newly allocated output character array.

Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl client. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns GSASL_OK if successful, or error code.

int gsasl_server_mechlist (Gsasl * ctx, char ** out) [Function]
ctx: libgsasl handle.

out: newly allocated output character array.

Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl server. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns GSASL_OK if successful, or error code.

int gsasl_client_support_p (Gsasl * ctx, const char * name) [Function]
ctx: libgsasl handle.

name: name of SASL mechanism.

Return value: Returns 1 if the libgsasl client supports the named mechanism, other-
wise 0.

int gsasl_server_support_p (Gsasl * ctx, const char * name) [Function]
ctx: libgsasl handle.

name: name of SASL mechanism.

Return value: Returns 1 if the libgsasl server supports the named mechanism, other-
wise 0.

Chapter 6: Global Functions 27

const char * gsasl_client_suggest_mechanism (Gsasl * ctx, [Function]
const char * mechlist)
ctx: libgsasl handle.
mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).
Return value: Returns name of "best" SASL mechanism supported by the libgsasl
client which is present in the input string.

int gsasl_register (Gsasl * ctx, const Gsasl_mechanism * mech) [Function]
ctx: pointer to libgsasl handle.

mech: plugin structure with information about plugin.

This function initialize given mechanism, and if successful, add it to the list of plugins
that is used by the library.
Return value: GSASL_OK iff successful, otherwise GSASL_MALLOC_ERROR.

Since: 0.2.0

Chapter 7: Callback Functions 28

7 Callback Functions

The callback is used by mechanisms to retrieve information, such as username and password,
from the application. In a server, the callback is used to decide whether a user is permitted
to log in or not. You tell the library of your callback function by calling gsasl_callback_
set.

Since your callback may need to access to data from other parts of your application, there
are hooks to store and retrieve application specific pointers. This avoid the use of global
variables in your application, which wouldn’t be thread safe. You store a pointer to some
information (opaque from the point of view of the library) by calling gsasl_callback_hook_
set and can later retrieve this data in your callback by calling gsasl_callback_hook_get.

void gsasl_callback_set (Gsasl * ctx, Gsasl-callback_function cb) [Function]
ctx: handle received from gsasl_init().

cb: pointer to function implemented by application.

Store the pointer to the application provided callback in the library handle.
The callback will be used, via gsasl_callback(), by mechanisms to discover
various parameters (such as username and passwords). The callback function will
be called with a Gsasl_property value indicating the requested behaviour. For
example, for GSASL_ANONYMOUS_TOKEN, the function is expected to invoke
gsasl_property_set(CTX, GSASL_.ANONYMOUS_TOKEN, "token") where "token"
is the anonymous token the application wishes the SASL mechanism to use. See the
manual for the meaning of all parameters.

Since: 0.2.0

int gsasl_callback (Gsasl * ctx, Gsasl_session * sctx, Gsasl_property [Function]

prop)
ctx: handle received from gsasl_init(), may be NULL to derive it from sctx.

sctx: session handle.
prop: enumerated value of Gsasl_property type.

Invoke the application callback. The prop value indicate what the callback is expected
to do. For example, for GSASL_ANONYMOUS_TOKEN, the function is expected to
invoke gsasl_property_set(SCTX, GSASL_ANONYMOUS_TOKEN, "token") where
"token" is the anonymous token the application wishes the SASL mechanism to use.
See the manual for the meaning of all parameters.

Note that if no callback has been set by the application, but the obsolete callback
interface has been used, this function will translate the old callback interface into the
new. This interface should be sufficient to invoke all callbacks, both new and old.

Return value: Returns whatever the application callback return, or
GSASL_NO_CALLBACK if no application was known.
Since: 0.2.0

void gsasl_callback_hook_set (Gsasl * ctx, void * hook) [Function]

ctx: libgsasl handle.

hook: opaque pointer to application specific data.

Chapter 7: Callback Functions 29

Store application specific data in the libgsasl handle. The application data can be
later (for instance, inside a callback) be retrieved by calling gsasl_callback_hook_
get (). It is normally used by the application to maintain state between the main
program and the callback.

Since: 0.2.0

void * gsasl_callback_hook_get (Gsasl * ctx) [Function]
ctx: libgsasl handle.

Retrieve application specific data from libgsasl handle. The application data is set us-
ing gsasl_callback_hook_set (). It is normally used by the application to maintain
state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Since: 0.2.0

Chapter 8: Property Functions 30

8 Property Functions

void gsasl_property_set (Gsaslsession * sctx, Gsasl_property prop, [Function]
const char * data)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.
data: zero terminated character string to store.

Make a copy of data and store it in the session handle for the indicated property
prop.

You can immediately deallocate data after calling this function, without affecting the
data stored in the session handle.

Since: 0.2.0

void gsasl_property_set_raw (Gsasl_session * sctx, Gsasl_property [Function]
prop, const char * data, size_t len)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.
data: character string to store.
len: length of character string to store.

Make a copy of len sized data and store a zero terminated version of it in the session
handle for the indicated property prop.

You can immediately deallocate data after calling this function, without affecting the
data stored in the session handle.

Except for the length indicator, this function is identical to gsasl_property_set.

Since: 0.2.0

const char * gsasl_property_fast (Gsasl_session * sctx, [Function]
Gsasl_property prop)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.
Retrieve the data stored in the session handle for given property prop.

The pointer is to live data, and must not be deallocated or modified in any way.
This function will not invoke the application callback.

Return value: Return property value, if known, or NULL if no value known.

Since: 0.2.0

const char * gsasl_property_get (Gsasl_session * sctx, [Function]
Gsasl_property prop)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.

Retrieve the data stored in the session handle for given property prop, possibly in-
voking the application callback to get the value.

The pointer is to live data, and must not be deallocated or modified in any way.

Chapter 8: Property Functions 31

This function will invoke the application callback, using gsasl_callback(), when a
property value is not known.

If no value is known, and no callback is specified or if the callback fail to return
data, and if any obsolete callback functions has been set by the application, this
function will try to call these obsolete callbacks, and store the returned data as the
corresponding property. This behaviour of this function will be removed when the
obsolete callback interfaces are removed.

Return value: Return data for property, or NULL if no value known.
Since: 0.2.0

Chapter 9: Session Functions 32

9 Session Functions

int gsasl_client_start (Gsasl * ctx, const char * mech, [Function]
Gsasl_session ** sctx)
ctx: libgsasl handle.

mech: name of SASL mechanism.
sctx: pointer to client handle.

This functions initiates a client SASL authentication. This function must be called
before any other gsasl_client_*() function is called.

Return value: Returns GSASL_OK if successful, or error code.

int gsasl_server_start (Gsasl * ctx, const char * mech, [Function]
Gsasl_session ** sctx)
ctx: libgsasl handle.

mech: name of SASL mechanism.
sctx: pointer to server handle.

This functions initiates a server SASL authentication. This function must be called
before any other gsasl_server_*() function is called.

Return value: Returns GSASL_OK if successful, or error code.

int gsasl_step (Gsaslsession * sctx, const char * input, size_t [Function]
input_len, char ** output, size_t * output_len)
sctx: libgsasl session handle.
input: input byte array.
input_len: size of input byte array.
output: newly allocated output byte array.
output_len: pointer to output variable with size of output byte array.
Perform one step of SASL authentication. This reads data from the other end (from
input and input_len), processes it (potentially invoking callbacks to the application),

and writes data to server (into newly allocated variable output and output_len that
indicate the length of output).

The contents of the output buffer is unspecified if this functions returns anything
other than GSASL_OK or GSASL_NEEDS_MORE. If this function return GSASL_OK or
GSASL_NEEDS_MORE, however, the output buffer is allocated by this function, and it
is the responsibility of caller to deallocate it by calling free (output).

Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

int gsasl_step64 (Gsasl_session * sctx, const char * b64input, char [Function]
** b64output)
sctx: libgsasl client handle.

b64input: input base64 encoded byte array.
b64output: newly allocated output base64 encoded byte array.

Chapter 9: Session Functions 33

This is a simple wrapper around gsasl_step() that base64 decodes the input and
base64 encodes the output.

The contents of the b64output buffer is unspecified if this functions returns anything
other than GSASL_OK or GSASL_NEEDS_MORE. If this function return GSASL_OK or
GSASL_NEEDS_MORE, however, the b64output buffer is allocated by this function, and
it is the responsibility of caller to deallocate it by calling free (b64output).

Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

void gsasl_finish (Gsasl_session * sctx) [Function]
sctx: libgsasl session handle.

Destroy a libgsasl client or server handle. The handle must not be used with other
libgsasl functions after this call.

int gsasl_encode (Gsasl_session * sctx, const char * input, size_t [Function]
input_len, char ** output, size_t * output_len)
sctx: libgsasl session handle.

input: input byte array.

input_len: size of input byte array.

output: newly allocated output byte array.
output_len: size of output byte array.

Encode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

The output buffer is allocated by this function, and it is the responsibility of caller
to deallocate it by calling free(output).

Return value: Returns GSASL_OK if encoding was successful, otherwise an error
code.

int gsasl_decode (Gsasl_session * sctx, const char * input, size_t [Function]
input_len, char ** output, size_t * output_len)
sctx: libgsasl session handle.

input: input byte array.

input_len: size of input byte array.

output: newly allocated output byte array.

output_len: size of output byte array.

Decode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

The output buffer is allocated by this function, and it is the responsibility of caller
to deallocate it by calling free(output).

Return value: Returns GSASL_OK if encoding was successful, otherwise an error
code.

Chapter 10: Utilities 34

10

char

char

char

Utilities

* gsasl_stringprep_nfkc (const char * in, ssize_t len) [Function]
in: a UTF-8 encoded string.

len: length of str, in bytes, or -1 if str is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.

Return value: Return a newly allocated string, that is the NFKC normalized form of
str, o NULL on error.

* gsasl_stringprep_saslprep (const char * in, int * [Function]
stringprep_rc)
in: input ASCII or UTF-8 string with data to prepare according to SASLprep.

stringprep_rc: pointer to output variable with stringprep error code, or NULL to indi-
cate that you don’t care about it.

Process a Unicode string for comparison, according to the "SASLprep" stringprep
profile. This function is intended to be used by Simple Authentication and Security
Layer (SASL) mechanisms (such as PLAIN, CRAM-MD5, and DIGEST-MD5) as well
as other protocols exchanging user names and/or passwords.

Return value: Return a newly allocated string that is the "SASLprep" processed
form of the input string, or NULL on error, in which case stringprep_rc contain the
stringprep library error code.

*x gsasl_stringprep_trace (const char * in, int * [Function]
stringprep_rc)
in: input ASCII or UTF-8 string with data to prepare according to "trace".

stringprep_rc: pointer to output variable with stringprep error code, or NULL to indi-
cate that you don’t care about it.

Process a Unicode string for use as trace information, according to the "trace" string-
prep profile. The profile is designed for use with the SASL,. ANONYMOUS Mecha-

nism.

Return value: Return a newly allocated string that is the "trace" processed form of
the input string, or NULL on error, in which case stringprep_rc contain the stringprep
library error code.

Chapter 10: Utilities 35

int gsasl_base64_encode (char const * src, size_t srclength, char * [Function]
target, size_t targsize)
src: input byte array

srclength: size of input byte array
target: output byte array
targsize: size of output byte array

Encode data as base64. Converts characters, three at a time, starting at src into four
base64 characters in the target area until the entire input buffer is encoded.

Return value: Returns the number of data bytes stored at the target, or -1 on error.

int gsasl_base64_decode (char const * src, char * target, size_t [Function]
targsize)
src: input byte array
target: output byte array
targsize: size of output byte array

Decode Base64 data. Skips all whitespace anywhere. Converts characters, four at
a time, starting at (or after) src from Base64 numbers into three 8 bit bytes in the
target area.

Return value: Returns the number of data bytes stored at the target, or -1 on error.

int gsasl_mdb5pwd_get_password (const char * filename, const char [Function]
* username, char * key, size_t * keylen)
filename: filename of file containing passwords.

username: username string.
key: output character array.

keylen: input maximum size of output character array, on output contains actual
length of output array.

Retrieve password for user from specified file. To find out how large the output array
must be, call this function with out=NULL.

The file should be on the UoW "MD5 Based Authentication" format, which means
it is in text format with comments denoted by # first on the line, with user entries
looking as username\tpassword. This function removes \r and \n at the end of lines
before processing.

Return value: Return GSASL_OK if output buffer contains the password,
GSASL_AUTHENTICATION_ERROR if the user could not be found, or other error
code.

int gsasl_nonce (char * data, size_-t datalen) [Function]
data: output array to be filled with unpredictable random data.

datalen: size of output array.
Store unpredictable data of given size in the provided buffer.
Return value: Returns GSASL_OK iff successful.

Chapter 10: Utilities 36

int gsasl_random (char * data, size_t datalen) [Function]
data: output array to be filled with strong random data.

datalen: size of output array.
Store cryptographically strong random data of given size in the provided buffer.
Return value: Returns GSASL_OK iff successful.

int gsasl_md5 (const char * in, size_t inlen, char * out[16]) [Function]
in: input character array of data to hash.

inlen: length of input character array of data to hash.
Compute hash of data using MD5. The out buffer must be deallocated by the caller.
Return value: Returns GSASL_OK iff successful.

int gsasl_hmac_md5 (const char * key, size_t keylen, const char * in, [Function]
size_t inlen, char * outhash[16])
key: input character array with key to use.

keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.

Compute keyed checksum of data using HMAC-MDb5. The outhash buffer must be
deallocated by the caller.

Return value: Returns GSASL_OK iff successful.

Chapter 11: Error Handling 37

11 Error Handling

Most functions in the GNU SASL Library are returning an error if they fail. For this reason,
the application should always catch the error condition and take appropriate measures, for
example by releasing the resources and passing the error up to the caller, or by displaying
a descriptive message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

11.1 Error values

Errors are returned as an int. Except for the OK case an application should always use the
constants instead of their numeric value. Applications are encouraged to use the constants
even for OK as it improves readability. Possible values are:

GSASL_OK This value indicates success. The value of this error is guaranteed to always be
0 so you may use it in boolean constructs.

GSASL_NEEDS_MORE
SASL mechanisms needs more data

GSASL_UNKNOWN_MECHANISM
Unknown SASL mechanism

GSASL_MECHANISM_CALLED_TOO_MANY_TIMES
SASL mechanism called too many times

GSASL_TOO_SMALL_BUFFER
SASL function need larger buffer (internal error)

GSASL_FOPEN_ERROR
Could not open file in SASL library

GSASL_FCLOSE_ERROR
Could not close file in SASL library

GSASL_MALLOC_ERROR
Memory allocation error in SASL library

GSASL_BASE64_ERROR
Base 64 coding error in SASL library

GSASL_GCRYPT_ERROR
Gcerypt error in SASL library

GSASL_GSSAPI_RELEASE_BUFFER_ERROR
GSSAPI library could not deallocate memory in gss_release_buffer() in SASL
library. This is a serious internal error.

GSASL_GSSAPI_IMPORT_NAME_ERROR
