
The Shishi Manual
for version 0.0.3, 17 August 2003

Simon Josefsson (bug-shishi@josefsson.org)

mailto:bug-shishi@josefsson.org

This is The Shishi Manual, last updated 17 August 2003, for Version 0.0.3 of Shishi.
Copyright c© 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features and Status . 1
1.3 Overview . 2
1.4 Cryptographic Overview . 4
1.5 Supported Platforms . 6
1.6 Bug Reports . 6

2 User Manual . 8

3 Administration Manual 13

4 Programming Manual . 14
4.1 Preparation . 14

4.1.1 Header. 14
4.1.2 Initialization . 14
4.1.3 Version Check . 14
4.1.4 Building the source . 15

4.2 Initialization Functions . 15
4.3 Ticket Set Functions. 18
4.4 AP-REQ and AP-REP Functions . 22
4.5 SAFE and PRIV Functions . 34
4.6 Ticket Functions . 38
4.7 AS Functions . 40
4.8 TGS Functions . 44
4.9 Ticket (ASN.1) Functions . 47
4.10 AS/TGS Functions . 48
4.11 Authenticator Functions . 61
4.12 Cryptographic Functions . 65
4.13 Utility Functions . 76
4.14 Error Handling. 78

4.14.1 Error values . 78
4.14.2 Error strings . 79

4.15 Examples . 80
4.16 Generic Security Service . 80

5 Acknowledgements . 82

Appendix A Copying This Manual 83
A.1 GNU Free Documentation License . 83

A.1.1 ADDENDUM: How to use this License for your
documents . 89

ii

Appendix B GNU GENERAL PUBLIC
LICENSE . 90
B.1 Preamble . 90
B.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 90
B.3 How to Apply These Terms to Your New Programs 95

Concept Index . 96

Function and Data Index . 97

Chapter 1: Introduction 1

1 Introduction

Shishi implements the RFC 1510 network security system, also known as Kerberos 5.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the RFC
1510 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License (see Appendix B [Copying], page 90).

It’s thread-safe
The library uses no global variables.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
yet. However, some basic functionality is implemented. A few implemented feature are
mentioned below.
• Initial authentication (AS) from raw key or password. This step is typically used to

acquire a ticket granting ticket and, less commonly, a server ticket.
• Subsequent authentication (TGS). This step is typically used to acquire a server ticket,

by authenticating yourself using the ticket granting ticket.
• Client-Server authentication (AP). This step is used by clients and servers to prove to

each other who they are, using negotiated tickets.
• Integrity protected communication (SAFE). This step is used by clients and servers to

exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

Chapter 1: Introduction 2

• Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

• Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview], page 4).

• Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

• PAM module. This is used to login locally on a machine.
• KDC addresses located using DNS SRV RRs.

The following table summarize what the current objectives are (i.e., the todo list) and
an estimate on how long it will take to implement the feature. If you like to start working
on anything, please let me know so work duplication can be avoided.
• Pre-authentication support (week).
• Cross-realm support (week).
• Session keys in AP (week).
• PKINIT (use libksba, weeks)
• Finish GSSAPI support via GPL GSS (weeks) Shishi will not support GSS, but a

separate project “GPL GSS” is under way to produce a generic GSS implementation,
and it will use Shishi to implement the Kerberos 5 mechanism.

• Port to cyclone (cyclone need to mature first)
• Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-

tionality is found in lib/asn1.c.
• Modularize Crypto library so it can be replaced (days). Nettle and libgcrypt are

currently supported, but not via an abstract interface. All crypto operations has been
isolated into lib/crypto*.c.

• KDC (initiated, weeks)
• Set/Change password protocol (weeks?)
• Port applications to use Shishi (indefinite)
• Improve documentation
• Improve internationalization
• Add AP-REQ replay cache (week).

1.3 Overview

This section describes RFC 1510 from a protocol point of view1.
Kerberos provides a means of verifying the identities of principals, (e.g., a workstation

user or a network server) on an open (unprotected) network. This is accomplished without

1 The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, unclear copyrights, but presumably owned by The Internet Society.

Chapter 1: Introduction 3

relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it
takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for
the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve
privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that

Chapter 1: Introduction 4

it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. Here are the names
of the supported encryption suites, with some notes on their status and there associated
checksum suite. They are ordered by increased security as perceived by the author.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

des-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode. The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed but
encrypted CRC32-like checksum. It is weak. It is associated with the rsa-md5-
des checksum.

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode. The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed
but encrypted MD4 hash. It is weak. It is associated with the rsa-md4-des
checksum.

des-cbc-md5
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode. The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed
but encrypted MD5 hash. It is weak. It is associated with the rsa-md5-des
checksum. This is the strongest RFC 1510 interoperable mechanism.

des3-cbc-sha1-kd
des3-cbc-sha1-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"2 by Uri Blumenthal and Steven M. Bellovin

2 http://www.research.att.com/~smb/papers/ides.pdf

Chapter 1: Introduction 5

(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
(HMAC) SHA1 hash. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. It is associated with the hmac-sha1-des3-kd checksum.

aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha1-96.

aes128-cts-hmac-sha1-96 and aes256-cts-hmac-sha1-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Password
Based Key Derivation Function 23, which is allegedly provably secure in a ran-
dom oracle model. Data is integrity protected with a keyed (HMAC) SHA1
hash truncated to 96 bits. There is no security proof, but the schemes are as-
sumed to provide good security, but has, as AES itself, yet to receive the test
of time. It is associated with the hmac-sha1-96-aes128 and hmac-sha1-96-
aes256 checksums, respectively.

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

hmac-sha1-des3-kd
hmac-sha1-des3-kd is a keyed (HMAC) SHA1 hash computed over the mes-
sage. The key is derived from the base protocol by the simplified key derivation

3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 6

function (similar to the password key derivation functions of des3-cbc-sha1-
kd). It has no security proof, but is assumed to provide good security. It is
compatible with the des3-cbc-sha1-kd encryption mechanism.

hmac-sha1-96-aes128
hmac-sha1-96-aes256

hmac-sha1-96-aes* are keyed (HMAC) SHA1 hashes computed over the mes-
sage and then truncated to 96 bits. The key is derived from the base protocol
by the simplified key derivation function (similar to the password key derivation
functions of des3-cbc-sha1-kd). It has no security proof, but is assumed to
provide good security. It is compatible with the des3-cbc-sha1-kd encryption
mechanism.

1.5 Supported Platforms

Shishi has at some point in time been tested on the following platforms.
1. Debian GNU/Linux 3.0r0 (Woody)

GCC 2.95.4 and GNU Make. alphaev67-unknown-linux-gnu, alphaev6-unknown-linux-
gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu, ia64-unknown-linux-gnu.

2. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev68-dec-osf5.1.

3. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev67-unknown-linux-gnu.

4. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

5. RedHat Linux 7.2
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

6. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

7. Red Hat Advanced Server 2.1
GCC 2.96 and GNU Make. ia64-unknown-linux-gnu (Intel Madison).

8. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

9. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-netbsdelf1.6.

10. OpenBSD 3.1
GCC 2.95.3 and GNU Make. i386-unknown-openbsd3.1.

11. FreeBSD 4.7
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-freebsd4.7.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see
Section 1.6 [Bug Reports], page 7).

Chapter 1: Introduction 7

1.6 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.
• Please make sure that the bug is really in Shishi, and preferably also check that it

hasn’t already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

Chapter 2: User Manual 8

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a pass-
word, and then contacts a server to receive a so called ticket granting ticket. From now on,
you rarely interacts with Shishi directly. Applications that needs security services instruct
the Shishi library to use the ticket granting ticket to get new tickets for various servers. An
example could be if you log on to a host remotely via ‘telnet’. The host usually requires
authentication before permitting you in. The ‘telnet’ client uses the ticket granting ticket
to get a ticket for the server, and then use this ticket to authenticate you against the server
(typically the server is also authenticated to you). You perform the initial authentication
by typing shishi at the prompt. Sometimes it is necessary to supply options telling Shishi
what your principal name (user name in the Kerberos realm) or realm is. In the example,
I specify the client name simon@JOSEFSSON.ORG.

� �
$ shishi simon@JOSEFSSON.ORG
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:44:49 2003
Endtime: Fri Aug 15 05:01:29 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: INITIAL (512)
$
 	

As you can see, Shishi also prints a short description of the ticket received.

A logical next step is to display all tickets you have received (by the way, the tickets are
usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --list.

Chapter 2: User Manual 9� �
$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)
Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte.josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.
$
 	

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server-name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

� �
$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:54:33 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: user/billg key des-cbc-md4 (2)
Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)
$
 	

As you can see, I acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview], page 4) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

Chapter 2: User Manual 10

� �
$ shishi --server-name=imap/latte.josefsson.org --destroy
1 ticket removed.
$ shishi --server-name=foobar --destroy
No tickets removed.
$ shishi --destroy
3 tickets removed.
$
 	

Below follows a list of all parameters.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Usage: shishi [OPTION...] [NAME] [OPTION...]
or: shishi [OPTION...] --list [--server-name=NAME]
or: shishi [OPTION...] --destroy [--server-name=NAME]
or: shishi [OPTION...] --crypto [CRYPTO-OPTION...]
or: shishi [OPTION...]

--client-name=NAME Client name. Default is login username. Only for
AS.

-d, --destroy Destroy tickets in local cache, subject to
--server-name limiting.

-e, --endtime=STRING Specify when ticket validity should expire. The
time syntax may be relative (to the start time),
such as "20 hours", or absolute, such as
"2001-02-03 04:05:06 CET". The default is 8 hours
after the start time.

-E, --encryption-type=ETYPE,[ETYPE...]
Encryption types to use. ETYPE is either
registered name or integer.

--force-as Force AS mode. Default is to use TGS iff a TGT is
found.

--force-tgs Force TGS mode. Default is to use TGS iff a TGT is
found.

--key-value=KEY Cipher key to decrypt response (discouraged).
-l, --list List tickets in local cache, subject to

--server-name limiting.
--password=PASSWORD Password to decrypt response (discouraged). Only

for AS.
--realm=REALM Realm of server. Default is DNS domain of local

host. For AS, this also indicates realm of client.

--renew-till=STRING Specify renewable life of ticket. Implies
--renewable. Accepts same time syntax as
--endtime. If --renewable is specified, the

Chapter 2: User Manual 11

default is 1 week after the start time.
--renewable Get a renewable ticket.

-R, --renew Renew ticket. Use --server-name to specify
ticket, default is the most recent renewable
ticket granting ticket for the default realm.

--server=[FAMILY:]ADDRESS:SERVICE/TYPE
Send all requests to HOST instead of using normal
logic to locate KDC addresses (discouraged).

--server-name=NAME Server name. Default is "krbtgt/REALM" where REALM
is server realm (see --realm).

-s, --starttime=STRING Specify when ticket should start to be valid.
Accepts same time syntax as --endtime. The default
is to become valid immediately.

--ticket-granter=NAME Service name in ticket to use for authenticating
request. Only for TGS. Defaults to
"krbtgt/REALM@REALM" where REALM is server realm
(see --realm).

Options for low-level cryptography (CRYPTO-OPTIONS):
--algorithm=ALGORITHM Cipher algorithm, expressed either as the etype

integer or the registered name.
--client-name=NAME Username. Default is login name.
--decrypt Decrypt data.
--encrypt Encrypt data.
--key-usage=KEYUSAGE Encrypt or decrypt using specified key usage.

Default is 0, which means no key derivation are
performed.

--key-value=KEY Base64 encoded key value.
--key-version=INTEGER Version number of key.
--parameter=STRING String-to-key parameter to use when --password is

specified. This data is specific for each
encryption algorithm and rarely needed.

--password=PASSWORD Password used to generate key. --client-name and
--realm also modify the computed key value.

--random Generate key from random data.
--read-data-file=[TYPE,]FILE

Read data from FILE in TYPE, BASE64, HEX or BINARY
(default).

--read-key-file=FILE Read cipher key from FILE
--realm=REALM Realm of principal. Defaults to DNS domain of

local host.
--salt=SALT Salt to use when --password is specified. Defaults

to using theusername (--client-name) and realm
(--realm).

--write-data-file=[TYPE,]FILE
Write data to FILE in TYPE, BASE64, HEX or BINARY
(default).

Chapter 2: User Manual 12

--write-key-file=FILE Append cipher key to FILE

Other options:
--configuration-file=FILE Read user configuration from file. Default

is ~/.shishi/config.
-c, --ticket-file=FILE Read tickets from FILE. Default is

$HOME/.shishi/tickets.
-o, --library-options=STRING Parse STRING as a configuration file

statement.
-q, --quiet, --silent Don’t produce any output.

--system-configuration-file=FILE
Read system wide configuration from file. Default
is /usr/local/etc/shishi.conf.

--ticket-write-file=FILE Write tickets to FILE. Default is to write
them back to ticket file.

-v, --verbose Produce verbose output.
--verbose-library Produce verbose output in the library.

NAME Set client name and realm from NAME. The
--client-name and --realm can be used to override
part of NAME.

-?, --help Give this help list
--usage Give a short usage message

-V, --version Print program version

Chapter 3: Administration Manual 13

3 Administration Manual

TBW.

Chapter 4: Programming Manual 14

4 Programming Manual

This chapter describes all the publicly available functions in the library.

4.1 Preparation

To use ‘Libshishi’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libshishi’ may be
to look at the examples at the end of this manual (see Section 4.15 [Examples], page 80).

4.1.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘shishi.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <shishi.h>

The name space of ‘Libshishi’ is shishi_* for function names, Shishi* for data types
and SHISHI_* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

4.1.2 Initialization

‘Libshishi’ must be initialized before it can be used. The library is initialized by calling
shishi_init() (see Section 4.2 [Initialization Functions], page 15). The resources allocated
by the initialization process can be released if the application no longer has a need to call
‘Libshishi’ functions, this is done by calling shishi_done().

In order to take advantage of the internationalisation features in ‘Libshishi’, such as
translated error messages, the application must set the current locale using setlocale()
before initializing ‘Libshishi’.

4.1.3 Version Check

It is often desirable to check that the version of ‘Libshishi’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

[Function]const char * shishi check version (const char * req_version)
req version: version string to compare with, or NULL
Check that the the version of the library is at minimum the one given as a string in
req_version.

Chapter 4: Programming Manual 15

the actual version string of the library; NULL if the condition is not met. If NULL
is passed to this function no check is done and only the version string is returned.
It is a pretty good idea to run this function as soon as possible, because it may also
intializes some subsystems. In a multithreaded environment if should be called before
any more threads are created.

The normal way to use the function is to put something similar to the following early in
your main():

if (!shishi_check_version (SHISHI_VERSION))
{

printf ("shishi_check_version() failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

4.1.4 Building the source

If you want to compile a source file including the ‘shishi.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libshishi’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
shishi. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config shishi --cflags‘

Adding the output of ‘pkg-config shishi --cflags’ to the compilers command line
will ensure that the compiler can find the ‘Libshishi’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
shishi can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘Libshishi’ libararies (in particular, the ‘-lshishi’
option). The example shows how to link ‘foo.o’ with the ‘Libshishi’ library to a program
foo.

gcc -o foo foo.o ‘pkg-config shishi --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config shishi --cflags --libs‘

4.2 Initialization Functions

[Function]Shishi * shishi (void)
Initializes the Shishi library. If this function fails, it may print diagnostic errors to
stderr.

Chapter 4: Programming Manual 16

Returns Shishi library handle, or NULL on error.

[Function]int shishi init (Shishi ** handle)
handle: pointer to handle to be created.

Create a Shishi library handle and read the system configuration file, user configura-
tion file and user tickets from the default paths. The paths to the system configuration
file is decided at compile time, and is $sysconfdir/shishi.conf. The user configuration
file is $HOME/.shishi/config, and the user ticket file is $HOME/.shishi/ticket. The
handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Returns SHISHI OK iff successful.

[Function]int shishi init with paths (Shishi ** handle, const char *
tktsfile, const char * systemcfgfile, const char * usercfgfile)

handle: pointer to handle to be created.

tktsfile: Filename of ticket file, or NULL.

systemcfgfile: Filename of system configuration, or NULL.

usercfgfile: Filename of user configuration, or NULL.

Like shishi_init() but use explicit paths. Like shishi_init(), the handle is al-
located regardless of return values, except for SHISHI HANDLE ERROR which in-
dicates a problem allocating the handle. (The other error conditions comes from
reading the files.)

Returns SHISHI OK iff successful.

[Function]int shishi init server (Shishi ** handle)
handle: pointer to handle to be created.

Like shishi_init() but only read the system configuration file. Like
shishi_init(), the handle is allocated regardless of return values, except for
SHISHI HANDLE ERROR which indicates a problem allocating the handle. (The
other error conditions comes from reading the configuration file.)

Returns SHISHI OK iff successful.

[Function]int shishi init server with paths (Shishi ** handle, const char
* systemcfgfile)

handle: pointer to handle to be created.

systemcfgfile: Filename of system configuration, or NULL.

Like shishi_init() but only read the system configuration file from specified loca-
tion. Like shishi_init(), the handle is allocated regardless of return values, except
for SHISHI HANDLE ERROR which indicates a problem allocating the handle. (The
other error conditions comes from reading the configuration file.)

Returns SHISHI OK iff successful.

[Function]void shishi done (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

Chapter 4: Programming Manual 17

Deallocates the shishi library handle. The handle must not be used in any calls to
shishi functions after this. If there is a default tkts, it is written to the default tkts file
(call shishi_tkts_default_file_set() to change the default tkts file). If you do not
wish to write the default tkts file, close the default tkts with shishi tkts done(handle,
NULL) before calling this function.

[Function]int shishi cfg (Shishi * handle, char * option)
handle: Shishi library handle create by shishi_init().

option: string with shishi library option.

Configure shishi library with given option.

Returns SHISHI OK if option was valid.

[Function]int shishi cfg from file (Shishi * handle, const char * cfg)
handle: Shishi library handle create by shishi_init().

cfg : filename to read configuration from.

Configure shishi library using configuration file.

Returns SHISHI OK iff succesful.

[Function]int shishi cfg print (Shishi * handle, FILE * fh)
handle: Shishi library handle create by shishi_init().

fh: file descriptor opened for writing.

Print library configuration status, mostly for debugging purposes.

Returns SHISHI OK.

[Function]const char * shishi cfg default systemfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Return system configuration filename.

[Function]const char * shishi cfg default userdirectory (Shishi * handle)

handle: Shishi library handle create by shishi_init().

Return directory with configuration files etc.

[Function]const char * shishi cfg default userfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Return user configuration filename.

[Function]int shishi cfg clientkdcetype (Shishi * handle, int32_t **
etypes)

handle: Shishi library handle create by shishi_init().

etypes: output array with encryption types.

Set the etypes variable to the array of preferred client etypes.

Return the number of encryption types in the array, 0 means none.

Chapter 4: Programming Manual 18

[Function]int shishi cfg clientkdcetype set (Shishi * handle, char *
value)

handle: Shishi library handle create by shishi_init().
value: string with encryption types.
Set the "client-kdc-etypes" configuration option from given string. The string con-
tains encryption types (integer or names) separated by comma or whitespace, e.g.
"aes256-cts-hmac-sha1-96 des3-cbc-sha1-kd des-cbc-md5".
Return SHISHI OK iff successful.

4.3 Ticket Set Functions

A “ticket set” is, as the name implies, a collection of tickets. Functions are provided to read
tickets from file into a ticket set, to query number of tickets in the set, to extract a given
ticket from the set, to search the ticket set for tickets matching certain criterium, to write
the ticket set to a file, etc. High level functions for performing a initial authentication (see
Section 4.7 [AS Functions], page 40) or subsequent authentication (see Section 4.8 [TGS
Functions], page 44) and storing the new ticket in the ticket set are also provided.

To manipulate each individual ticket, See Section 4.6 [Ticket Functions], page 39. For
low-level ASN.1 manipulation see See Section 4.9 [Ticket (ASN.1) Functions], page 47.

[Function]char * shishi tkts default file guess (void)
Guesses the default ticket filename; it is $HOME/.shishi/tickets.
Returns default tkts filename as a string that has to be deallocated with free() by
the caller.

[Function]const char * shishi tkts default file (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Returns the default ticket set filename used in the library. (Not a copy of it, so don’t
modify or deallocate it.)

[Function]void shishi tkts default file set (Shishi * handle, const char *
tktsfile)

handle: Shishi library handle create by shishi_init().
tktsfile: string with new default tkts file name, or NULL to reset to default.
Set the default ticket set filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

[Function]Shishi_tkts * shishi tkts default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Return the handle global ticket set.

[Function]int shishi tkts (Shishi * handle, Shishi_tkts ** tkts)
handle: shishi handle as allocated by shishi_init().
tkts: output pointer to newly allocated tkts handle.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 19

[Function]void shishi tkts done (Shishi_tkts ** tkts)
tkts: ticket set handle as allocated by shishi_tkts().
Deallocates all resources associated with ticket set. The ticket set handle must not
be used in calls to other shishi tkts *() functions after this.

[Function]int shishi tkts size (Shishi_tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().
Returns number of tickets stored in ticket set.

[Function]Shishi_tkt * shishi tkts nth (Shishi_tkts * tkts, int ticketno)
tkts: ticket set handle as allocated by shishi_tkts().
ticketno: integer indicating requested ticket in ticket set.
Returns a ticket handle to the ticketno:th ticket in the ticket set, or NULL if ticket
set is invalid or ticketno is out of bounds. The first ticket is ticketno 0, the second
ticketno 1, and so on.

[Function]int shishi tkts remove (Shishi_tkts * tkts, int ticketno)
tkts: ticket set handle as allocated by shishi_tkts().
ticketno: ticket number of ticket in the set to remove. The first ticket is ticket number
0.
Returns SHISHI OK if succesful or if ticketno larger than size of ticket set.

[Function]int shishi tkts add (Shishi_tkts * tkts, Shishi_tkt * tkt)
tkts: ticket set handle as allocated by shishi_tkts().
tkt: ticket to be added to ticket set.
Returns SHISHI OK iff succesful.

[Function]int shishi tkts new (Shishi_tkts * tkts, Shishi_asn1 ticket,
Shishi_asn1 enckdcreppart, Shishi_asn1 kdcrep)

tkts: ticket set handle as allocated by shishi_tkts().
ticket: input ticket variable.
enckdcreppart: input ticket detail variable.
kdcrep: input KDC-REP variable.
Allocate a new ticket and add it to the ticket set.
Returns SHISHI OK iff succesful.

[Function]int shishi tkts read (Shishi_tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().
fh: file descriptor to read from.
Read tickets from file descriptor and add them to the ticket set.
Returns SHISHI OK iff succesful.

[Function]int shishi tkts from file (Shishi_tkts * tkts, const char *
filename)

tkts: ticket set handle as allocated by shishi_tkts().

Chapter 4: Programming Manual 20

filename: filename to read tickets from.

Read tickets from file and add them to the ticket set.

Returns SHISHI OK iff succesful.

[Function]int shishi tkts write (Shishi_tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to write tickets to.

Write tickets in set to file descriptor.

Returns SHISHI OK iff succesful.

[Function]int shishi tkts expire (Shishi_tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().

Remove expired tickets from ticket set.

Returns SHISHI OK iff succesful.

[Function]int shishi tkts to file (Shishi_tkts * tkts, const char * filename)

tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to write tickets to.

Write tickets in set to file.

Returns SHISHI OK iff succesful.

[Function]int shishi tkts print for service (Shishi_tkts * tkts, FILE * fh,
const char * service)

tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to print to.

service: service to limit tickets printed to, or NULL. Print description of tickets for
specified service to file descriptor. If service is NULL, all tickets are printed.

Returns SHISHI OK iff succesful.

[Function]int shishi tkts print (Shishi_tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to print to.

Print description of all tickets to file descriptor.

Returns SHISHI OK iff succesful.

[Function]int shishi tkt match p (Shishi_tkt * tkt, Shishi_tkts_hint *
hint)

tkt: ticket to test hints on.

hint: structure with characteristics of ticket to be found.

Returns 0 iff ticket fails to match given criteria.

Chapter 4: Programming Manual 21

[Function]Shishi_tkt * shishi tkts find (Shishi_tkts * tkts,
Shishi_tkts_hint * hint)

tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to be found.

Search the ticketset sequentially (from ticket number 0 through all tickets in the
set) for a ticket that fits the given characteristics. If a ticket is found, the hint-
>startpos field is updated to point to the next ticket in the set, so this function can
be called repeatedly with the same hint argument in order to find all tickets matching
a certain criterium. Note that if tickets are added to, or removed from, the ticketset
during a query with the same hint argument, the hint->startpos field must be updated
appropriately.

Shishi tkts hint hint;

Shishi tkt tkt;

...

memset(hint, 0, sizeof(hint));

hint.server = "imap/mail.example.org";

tkt = shishi tkts find (shishi tkts default(handle), hint);

if (!tkt)

printf("No ticket found...\n");

else

...do something with ticket

Returns a ticket if found, or NULL if no further matching tickets could be found.

[Function]Shishi_tkt * shishi tkts find for clientserver (Shishi_tkts *
tkts, const char * client, const char * server)

tkts: ticket set handle as allocated by shishi_tkts().

client: client name to find ticket for.

server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given client and
server. See shishi_tkts_find().

Returns a ticket if found, or NULL.

[Function]Shishi_tkt * shishi tkts find for server (Shishi_tkts * tkts,
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().

server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given server us-
ing the default client principal. See shishi_tkts_find_for_clientserver() and
shishi_tkts_find().

Returns a ticket if found, or NULL.

Chapter 4: Programming Manual 22

[Function]Shishi_tkt * shishi tkts get (Shishi_tkts * tkts,
Shishi_tkts_hint * hint)

tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.
Get a ticket matching given characteristics. This function first looks in the ticket
set for the ticket, then tries to find a TGT for the realm (possibly by using an AS
exchange) and then use the TGT in a TGS exchange to get the ticket. Currently this
function do not implement cross realm logic.
Returns a ticket if found, or NULL if this function is unable to get the ticket.

[Function]Shishi_tkt * shishi tkts get for clientserver (Shishi_tkts *
tkts, const char * client, const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
client: client name to get ticket for.
server: server name to get ticket for.
Short-hand function for getting a ticket for the given client and server. See shishi_
tkts_get().
Returns a ticket if found, or NULL.

[Function]Shishi_tkt * shishi tkts get for server (Shishi_tkts * tkts,
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
server: server name to get ticket for.
Short-hand function for getting a ticket for the given server and the default principal
client. See shishi_tkts_get().
Returns a ticket if found, or NULL.

4.4 AP-REQ and AP-REP Functions

The “AP-REQ” and “AP-REP” are ASN.1 structures used by application client and servers
to prove to each other who they are. The structures contain auxilliary information, together
with an authenticator (see Section 4.11 [Authenticator Functions], page 61) which is the real
cryptographic proof. The following illustrates the AP-REQ and AP-REP ASN.1 structures.
AP-REQ ::= [APPLICATION 14] SEQUENCE {

pvno [0] INTEGER (5),
msg-type [1] INTEGER (14),
ap-options [2] APOptions,
ticket [3] Ticket,
authenticator [4] EncryptedData {Authenticator,

{ keyuse-pa-TGSReq-authenticator
| keyuse-APReq-authenticator }}

}

AP-REP ::= [APPLICATION 15] SEQUENCE {

Chapter 4: Programming Manual 23

pvno [0] INTEGER (5),
msg-type [1] INTEGER (15),
enc-part [2] EncryptedData {EncAPRepPart,

{ keyuse-EncAPRepPart }}
}

EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
ctime [0] KerberosTime,
cusec [1] Microseconds,
subkey [2] EncryptionKey OPTIONAL,
seq-number [3] UInt32 OPTIONAL

}

[Function]int shishi ap (Shishi * handle, Shishi_ap ** ap)
handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
Create a new AP exchange.
Returns SHISHI OK iff successful.

[Function]int shishi ap set tktoptions (Shishi_ap * ap, Shishi_tkt * tkt,
int options)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()).
Returns SHISHI OK iff successful.

[Function]int shishi ap set tktoptionsdata (Shishi_ap * ap, Shishi_tkt *
tkt, int options, char * data, int len)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
data: input array with data to checksum in Authenticator.
len: length of input array with data to checksum in Authenticator.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the Authenticator checksum data.
Returns SHISHI OK iff successful.

[Function]int shishi ap set tktoptionsasn1usage (Shishi_ap * ap,
Shishi_tkt * tkt, int options, Shishi_asn1 node, char * field, int
authenticatorcksumkeyusage, int authenticatorkeyusage)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.

Chapter 4: Programming Manual 24

node: input ASN.1 structure to store as authenticator checksum data.
Set ticket, options and authenticator checksum data using shishi_ap_set_
tktoptionsdata(). The authenticator checksum data is the DER encoding of the
ASN.1 structure provided.
Returns SHISHI OK iff successful.

[Function]int shishi ap tktoptions (Shishi * handle, Shishi_ap ** ap,
Shishi_tkt * tkt, int options)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ
apoptions using shishi_ap_set_tktoption().
Returns SHISHI OK iff successful.

[Function]int shishi ap tktoptionsdata (Shishi * handle, Shishi_ap ** ap,
Shishi_tkt * tkt, int options, char * data, int len)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
data: input array with data to checksum in Authenticator.
len: length of input array with data to checksum in Authenticator.
Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata().
Returns SHISHI OK iff successful.

[Function]int shishi ap tktoptionsasn1usage (Shishi * handle, Shishi_ap
** ap, Shishi_tkt * tkt, int options, Shishi_asn1 node, char * field,
int authenticatorcksumkeyusage, int authenticatorkeyusage)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
node: input ASN.1 structure to store as authenticator checksum data.
Create a new AP exchange using shishi_ap(), and set ticket, options and authen-
ticator checksum data from the DER encoding of the ASN.1 field using shishi_ap_
set_tktoptionsasn1usage().
Returns SHISHI OK iff successful.

[Function]Shishi_tkt * shishi ap tkt (Shishi_ap * ap)
ap: structure that holds information about AP exchange
Returns the ticket from the AP exchange, or NULL if not yet set or an error occured.

Chapter 4: Programming Manual 25

[Function]void shishi ap tkt set (Shishi_ap * ap, Shishi_tkt * tkt)
ap: structure that holds information about AP exchange

tkt: ticket to store in AP.

Set the Ticket in the AP exchange.

[Function]int shishi ap authenticator cksumdata (Shishi_ap * ap, char *
out, int * len)

ap: structure that holds information about AP exchange

out: output array that holds authenticator checksum data.

len: on input, maximum length of output array that holds authenticator checksum
data, on output actual length of output array that holds authenticator checksum data.

Returns SHISHI OK if successful, or SHISHI TOO SMALL BUFFER if buffer pro-
vided was too small.

[Function]void shishi ap authenticator cksumdata set (Shishi_ap * ap,
char * authenticatorcksumdata, int authenticatorcksumdatalen)

ap: structure that holds information about AP exchange

authenticatorcksumdata: input array with authenticator checksum data to use in AP.

authenticatorcksumdatalen: length of input array with authenticator checksum data
to use in AP.

Set the Authenticator Checksum Data in the AP exchange.

[Function]Shishi_asn1 shishi ap authenticator (Shishi_ap * ap)
ap: structure that holds information about AP exchange

Returns the Authenticator from the AP exchange, or NULL if not yet set or an error
occured.

[Function]void shishi ap authenticator set (Shishi_ap * ap, Shishi_asn1
authenticator)

ap: structure that holds information about AP exchange

authenticator: authenticator to store in AP.

Set the Authenticator in the AP exchange.

[Function]Shishi_asn1 shishi ap req (Shishi_ap * ap)
ap: structure that holds information about AP exchange

Returns the AP-REQ from the AP exchange, or NULL if not yet set or an error
occured.

[Function]void shishi ap req set (Shishi_ap * ap, Shishi_asn1 apreq)
ap: structure that holds information about AP exchange

apreq: apreq to store in AP.

Set the AP-REQ in the AP exchange.

Chapter 4: Programming Manual 26

[Function]int shishi ap req der (Shishi_ap * ap, char * out, int * outlen)
ap: structure that holds information about AP exchange
out: output array with der encoding of AP-REQ.
outlen: length of output array with der encoding of AP-REQ.
Build AP-REQ using shishi_ap_req_build() and DER encode it.
Returns SHISHI OK iff successful.

[Function]int shishi ap req der new (Shishi_ap * ap, char ** out, int *
outlen)

ap: structure that holds information about AP exchange
out: pointer to output array with der encoding of AP-REQ.
outlen: pointer to length of output array with der encoding of AP-REQ.
Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.
Returns SHISHI OK iff successful.

[Function]int shishi ap req der set (Shishi_ap * ap, char * der, size_t
derlen)

ap: structure that holds information about AP exchange
der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.
DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the
AP exchange is lost.
Returns SHISHI OK.

[Function]int shishi ap req build (Shishi_ap * ap)
ap: structure that holds information about AP exchange
Checksum data in authenticator and add ticket and authenticator to AP-REQ.
Returns SHISHI OK iff successful.

[Function]int shishi ap req process (Shishi_ap * ap, Shishi_key * key)
ap: structure that holds information about AP exchange
key : cryptographic key used to decrypt ticket in AP-REQ.
Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.
Returns SHISHI OK iff successful.

[Function]int shishi ap req asn1 (Shishi_ap * ap, Shishi_asn1 * apreq)
ap: structure that holds information about AP exchange
apreq: output AP-REQ variable.
Build AP-REQ using shishi_ap_req_build() and return it.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 27

[Function]Shishi_asn1 shishi ap rep (Shishi_ap * ap)
ap: structure that holds information about AP exchange

Returns the AP-REP from the AP exchange, or NULL if not yet set or an error
occured.

[Function]void shishi ap rep set (Shishi_ap * ap, Shishi_asn1 aprep)
ap: structure that holds information about AP exchange

aprep: aprep to store in AP.

Set the AP-REP in the AP exchange.

[Function]int shishi ap rep der (Shishi_ap * ap, char * out, size_t *
outlen)

ap: structure that holds information about AP exchange

out: output array with der encoding of AP-REP.

outlen: length of output array with der encoding of AP-REP.

Build AP-REP using shishi_ap_rep_build() and DER encode it.

Returns SHISHI OK iff successful.

[Function]int shishi ap rep der set (Shishi_ap * ap, char * der, size_t
derlen)

ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.

derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the
AP exchange remains.

Returns SHISHI OK.

[Function]int shishi ap rep build (Shishi_ap * ap)
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REQ.

Returns SHISHI OK iff successful.

[Function]int shishi ap rep asn1 (Shishi_ap * ap, Shishi_asn1 * aprep)
ap: structure that holds information about AP exchange

aprep: output AP-REP variable.

Build AP-REP using shishi_ap_rep_build() and return it.

Returns SHISHI OK iff successful.

[Function]int shishi ap rep verify (Shishi_ap * ap)
ap: structure that holds information about AP exchange

Verify AP-REP compared to Authenticator.

Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

Chapter 4: Programming Manual 28

[Function]int shishi ap rep verify der (Shishi_ap * ap, char * der, size_t
derlen)

ap: structure that holds information about AP exchange
der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.
DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set()
and verify it using shishi_ap_rep_verify().
Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

[Function]int shishi ap rep verify asn1 (Shishi_ap * ap, Shishi_asn1
aprep)

ap: structure that holds information about AP exchange
aprep: input AP-REP.
Set the AP-REP in the AP exchange using shishi_ap_rep_set() and verify it using
shishi_ap_rep_verify().
Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

[Function]Shishi_asn1 shishi ap encapreppart (Shishi_ap * ap)
ap: structure that holds information about AP exchange
Returns the EncAPREPPart from the AP exchange, or NULL if not yet set or an
error occured.

[Function]void shishi ap encapreppart set (Shishi_ap * ap, Shishi_asn1
encapreppart)

ap: structure that holds information about AP exchange
encapreppart: EncAPRepPart to store in AP.
Set the EncAPRepPart in the AP exchange.

[Function]Shishi_asn1 shishi apreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AP-REQ, populated with some default values.
Returns the AP-REQ or NULL on failure.

[Function]int shishi apreq print (Shishi * handle, FILE * fh, Shishi_asn1
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
apreq: AP-REQ to print.
Print ASCII armored DER encoding of AP-REQ to file.
Returns SHISHI OK iff successful.

[Function]int shishi apreq save (Shishi * handle, FILE * fh, Shishi_asn1
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.

Chapter 4: Programming Manual 29

apreq: AP-REQ to save.
Save DER encoding of AP-REQ to file.
Returns SHISHI OK iff successful.

[Function]int shishi apreq to file (Shishi * handle, Shishi_asn1 apreq, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI OK iff successful.

[Function]int shishi apreq parse (Shishi * handle, FILE * fh, Shishi_asn1 *
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
apreq: output variable with newly allocated AP-REQ.
Read ASCII armored DER encoded AP-REQ from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi apreq read (Shishi * handle, FILE * fh, Shishi_asn1 *
apreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
apreq: output variable with newly allocated AP-REQ.
Read DER encoded AP-REQ from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi apreq from file (Shishi * handle, Shishi_asn1 * apreq,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
apreq: output variable with newly allocated AP-REQ.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read AP-REQ from file in specified TYPE.
Returns SHISHI OK iff successful.

[Function]int shishi apreq set authenticator (Shishi * handle,
Shishi_asn1 apreq, int32_t etype, char * buf, int buflen)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add authenticator field to.
etype: encryption type used to encrypt authenticator.

Chapter 4: Programming Manual 30

buf : input array with encrypted authenticator.
buflen: size of input array with encrypted authenticator.
Set the encrypted authenticator field in the AP-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded authenticator. To save
time, you may want to use shishi_apreq_add_authenticator() instead, which cal-
culates the encrypted data and calls this function in one step.

[Function]int shishi apreq add authenticator (Shishi * handle,
Shishi_asn1 apreq, Shishi_key * key, int keyusage, Shishi_asn1
authenticator)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add authenticator field to.
key : key to to use for encryption.
keyusage: kerberos key usage value to use in encryption.
authenticator: authenticator as allocated by shishi_authenticator().
Encrypts DER encoded authenticator using key and store it in the AP-REQ.
Returns SHISHI OK iff successful.

[Function]int shishi apreq set ticket (Shishi * handle, Shishi_asn1 apreq,
Shishi_asn1 ticket)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add ticket field to.
ticket: input ticket to copy into AP-REQ ticket field.
Copy ticket into AP-REQ.
Returns SHISHI OK iff successful.

[Function]int shishi apreq get authenticator etype (Shishi * handle,
Shishi_asn1 apreq, int32_t * etype)

handle: shishi handle as allocated by shishi_init().
etype: output variable that holds the value.
Extract KDC-REP.enc-part.etype.
Returns SHISHI OK iff successful.

[Function]int shishi apreq get ticket (Shishi * handle, Shishi_asn1 apreq,
Shishi_asn1 * ticket)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ variable to get ticket from.
ticket: output variable to hold extracted ticket.
Extract ticket from AP-REQ.
Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi aprep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AP-REP, populated with some default values.
Returns the authenticator or NULL on failure.

Chapter 4: Programming Manual 31

[Function]int shishi aprep print (Shishi * handle, FILE * fh, Shishi_asn1
aprep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

aprep: AP-REP to print.

Print ASCII armored DER encoding of AP-REP to file.

Returns SHISHI OK iff successful.

[Function]int shishi aprep save (Shishi * handle, FILE * fh, Shishi_asn1
aprep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

aprep: AP-REP to save.

Save DER encoding of AP-REP to file.

Returns SHISHI OK iff successful.

[Function]int shishi aprep to file (Shishi * handle, Shishi_asn1 aprep, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

aprep: AP-REP to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write AP-REP to file in specified TYPE. The file will be truncated if it exists.

Returns SHISHI OK iff successful.

[Function]int shishi aprep parse (Shishi * handle, FILE * fh, Shishi_asn1 *
aprep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

aprep: output variable with newly allocated AP-REP.

Read ASCII armored DER encoded AP-REP from file and populate given variable.

Returns SHISHI OK iff successful.

[Function]int shishi aprep read (Shishi * handle, FILE * fh, Shishi_asn1 *
aprep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

aprep: output variable with newly allocated AP-REP.

Read DER encoded AP-REP from file and populate given variable.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 32

[Function]int shishi aprep from file (Shishi * handle, Shishi_asn1 *
aprep, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

aprep: output variable with newly allocated AP-REP.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read AP-REP from file in specified TYPE.

Returns SHISHI OK iff successful.

[Function]int shishi aprep get enc part etype (Shishi * handle,
Shishi_asn1 aprep, int32_t * etype)

handle: shishi handle as allocated by shishi_init().

aprep: AP-REP variable to get value from.

etype: output variable that holds the value.

Extract AP-REP.enc-part.etype.

Returns SHISHI OK iff successful.

[Function]int shishi encapreppart print (Shishi * handle, FILE * fh,
Shishi_asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

encapreppart: EncAPRepPart to print.

Print ASCII armored DER encoding of EncAPRepPart to file.

Returns SHISHI OK iff successful.

[Function]int shishi encapreppart save (Shishi * handle, FILE * fh,
Shishi_asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

encapreppart: EncAPRepPart to save.

Save DER encoding of EncAPRepPart to file.

Returns SHISHI OK iff successful.

[Function]int shishi encapreppart to file (Shishi * handle, Shishi_asn1
encapreppart, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write EncAPRepPart to file in specified TYPE. The file will be truncated if it exists.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 33

[Function]int shishi encapreppart parse (Shishi * handle, FILE * fh,
Shishi_asn1 * encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
encapreppart: output variable with newly allocated EncAPRepPart.
Read ASCII armored DER encoded EncAPRepPart from file and populate given
variable.
Returns SHISHI OK iff successful.

[Function]int shishi encapreppart read (Shishi * handle, FILE * fh,
Shishi_asn1 * encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
encapreppart: output variable with newly allocated EncAPRepPart.
Read DER encoded EncAPRepPart from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi encapreppart from file (Shishi * handle, Shishi_asn1
* encapreppart, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
encapreppart: output variable with newly allocated EncAPRepPart.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read EncAPRepPart from file in specified TYPE.
Returns SHISHI OK iff successful.

[Function]int shishi encapreppart get key (Shishi * handle, Shishi_asn1
encapreppart, int32_t * keytype, char * keyvalue, size_t *
keyvalue_len)

handle: shishi handle as allocated by shishi_init().
encapreppart: input EncAPRepPart variable.
keytype: output variable that holds key type.
keyvalue: output array with key.
keyvalue len: on input, maximum size of output array with key, on output, holds the
actual size of output array with key.
Extract the subkey from the encrypted AP-REP part.
Returns SHISHI OK iff succesful.

[Function]int shishi encapreppart ctime set (Shishi * handle,
Shishi_asn1 encapreppart, char * ctime)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
ctime: string with generalized time value to store in EncAPRepPart.
Store client time in EncAPRepPart.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 34

[Function]int shishi encapreppart cusec get (Shishi * handle,
Shishi_asn1 encapreppart, int * cusec)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
cusec: output integer with client microseconds field.
Extract client microseconds field from EncAPRepPart.
Returns SHISHI OK iff successful.

[Function]int shishi encapreppart cusec set (Shishi * handle,
Shishi_asn1 encapreppart, int cusec)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
cusec: client microseconds to set in authenticator, 0-999999.
Set the cusec field in the Authenticator.
Returns SHISHI OK iff successful.

[Function]int shishi encapreppart seqnumber get (Shishi * handle,
Shishi_asn1 encapreppart, uint32_t * seqnumber)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
seqnumber: output integer with sequence number field.
Extract sequence number field from EncAPRepPart.
Returns SHISHI OK iff successful.

4.5 SAFE and PRIV Functions

The “KRB-SAFE” is an ASN.1 structure used by application client and servers to exchange
integrity protected data. The integrity protection is keyed, usually with a key agreed on
via the AP exchange (see Section 4.4 [AP-REQ and AP-REP Functions], page 22). The
following illustrates the KRB-SAFE ASN.1 structure.

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (20),
safe-body [2] KRB-SAFE-BODY,
cksum [3] Checksum

}

KRB-SAFE-BODY ::= SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress,
r-address [5] HostAddress OPTIONAL

}

Chapter 4: Programming Manual 35

[Function]int shishi safe (Shishi * handle, Shishi_safe ** safe)
handle: shishi handle as allocated by shishi_init().
safe: pointer to new structure that holds information about SAFE exchange
Create a new SAFE exchange.
Returns SHISHI OK iff successful.

[Function]Shishi_key * shishi safe key (Shishi_safe * safe)
safe: structure that holds information about SAFE exchange
Returns the key used in the SAFE exchange, or NULL if not yet set or an error
occured.

[Function]void shishi safe key set (Shishi_safe * safe, Shishi_key * key)
safe: structure that holds information about SAFE exchange
key : key to store in SAFE.
Set the Key in the SAFE exchange.

[Function]Shishi_asn1 shishi safe safe (Shishi_safe * safe)
safe: structure that holds information about SAFE exchange
Returns the ASN.1 safe in the SAFE exchange, or NULL if not yet set or an error
occured.

[Function]void shishi safe safe set (Shishi_safe * safe, Shishi_asn1
asn1safe)

safe: structure that holds information about SAFE exchange
asn1safe: KRB-SAFE to store in SAFE exchange.
Set the KRB-SAFE in the SAFE exchange.

[Function]int shishi safe safe der (Shishi_safe * safe, char * out, int *
outlen)

safe: safe as allocated by shishi_safe().
out: output array with der encoding of SAFE.
outlen: length of output array with der encoding of SAFE.
DER encode SAFE structure. Typically shishi_safe_build() is used instead to
build the SAFE structure first.
Returns SHISHI OK iff successful.

[Function]int shishi safe safe der set (Shishi_safe * safe, char * der,
size_t derlen)

safe: safe as allocated by shishi_safe().
der: input array with DER encoded KRB-SAFE.
derlen: length of input array with DER encoded KRB-SAFE.
DER decode KRB-SAFE and set it SAFE exchange. If decoding fails, the KRB-SAFE
in the SAFE exchange remains.
Returns SHISHI OK.

Chapter 4: Programming Manual 36

[Function]int shishi safe print (Shishi * handle, FILE * fh, Shishi_asn1
safe)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

safe: SAFE to print.

Print ASCII armored DER encoding of SAFE to file.

Returns SHISHI OK iff successful.

[Function]int shishi safe save (Shishi * handle, FILE * fh, Shishi_asn1
safe)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

safe: SAFE to save.

Save DER encoding of SAFE to file.

Returns SHISHI OK iff successful.

[Function]int shishi safe to file (Shishi * handle, Shishi_asn1 safe, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

safe: SAFE to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write SAFE to file in specified TYPE. The file will be truncated if it exists.

Returns SHISHI OK iff successful.

[Function]int shishi safe parse (Shishi * handle, FILE * fh, Shishi_asn1 *
safe)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read ASCII armored DER encoded SAFE from file and populate given variable.

Returns SHISHI OK iff successful.

[Function]int shishi safe read (Shishi * handle, FILE * fh, Shishi_asn1 *
safe)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read DER encoded SAFE from file and populate given variable.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 37

[Function]int shishi safe from file (Shishi * handle, Shishi_asn1 * safe,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
safe: output variable with newly allocated SAFE.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read SAFE from file in specified TYPE.
Returns SHISHI OK iff successful.

[Function]int shishi safe cksum (Shishi * handle, Shishi_asn1 safe,
int32_t * cksumtype, char * cksum, size_t * cksumlen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
cksumtype: output checksum type.
cksum: output checksum data from SAFE.
cksumlen: on input, maximum size of output checksum data buffer, on output, actual
size of output checksum data buffer.
Read checksum value from KRB-SAFE.
Returns SHISHI OK iff successful.

[Function]int shishi safe set cksum (Shishi * handle, Shishi_asn1 safe,
int32_t cksumtype, char * cksum, size_t cksumlen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
cksumtype: input checksum type to store in SAFE.
cksum: input checksum data to store in SAFE.
cksumlen: size of input checksum data to store in SAFE.
Store checksum value in SAFE. A checksum is usually created by calling shishi_
checksum() on some application specific data using the key from the ticket that is
being used. To save time, you may want to use shishi_safe_build() instead, which
calculates the checksum and calls this function in one step.
Returns SHISHI OK iff successful.

[Function]int shishi safe user data (Shishi * handle, Shishi_asn1 safe,
char * userdata, size_t * userdatalen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
userdata: output user data from KRB-SAFE.
userdatalen: on input, maximum size of output user data buffer, on output, actual
size of output user data buffer.
Read user data value from KRB-SAFE.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 38

[Function]int shishi safe set user data (Shishi * handle, Shishi_asn1
safe, char * userdata, size_t userdatalen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
userdata: input user application to store in SAFE.
userdatalen: size of input user application to store in SAFE.
Set the application data in SAFE.
Returns SHISHI OK iff successful.

[Function]int shishi safe build (Shishi_safe * safe, Shishi_key * key)
safe: safe as allocated by shishi_safe().
key : key for session, used to compute checksum.
Build checksum and set it in KRB-SAFE. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.
Returns SHISHI OK iff successful.

[Function]int shishi safe verify (Shishi_safe * safe, Shishi_key * key)
safe: safe as allocated by shishi_safe().
key : key for session, used to verify checksum.
Verify checksum in KRB-SAFE. Note that this follows RFC 1510bis and is incom-
patible with RFC 1510, although presumably few implementations use the RFC1510
algorithm.
Returns SHISHI OK iff successful, SHISHI SAFE BAD KEYTYPE if an incompat-
ible key type is used, or SHISHI SAFE VERIFY FAILED if the actual verification
failed.

The “KRB-PRIV” is an ASN.1 structure used by application client and servers to ex-
change confidential data. The confidentiality is keyed, usually with a key agreed on via the
AP exchange (see Section 4.4 [AP-REQ and AP-REP Functions], page 22). The following
illustrates the KRB-PRIV ASN.1 structure.

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (21),

-- NOTE: there is no [2] tag
enc-part [3] EncryptedData -- EncKrbPrivPart

}

EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress -- sender’s addr --,
r-address [5] HostAddress OPTIONAL -- recip’s addr

}

Chapter 4: Programming Manual 39

4.6 Ticket Functions

[Function]int shishi tkt client (Shishi_tkt * tkt, char * client, int *
clientlen)

client: output buffer that holds client name of ticket.

clientlen: on input, maximum size of output buffer, on output, actual size of output
buffer.

Returns client principal of ticket.

[Function]Shishi_asn1 shishi tkt ticket (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns actual ticket.

[Function]Shishi_asn1 shishi tkt enckdcreppart (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns auxilliary ticket information.

[Function]void shishi tkt enckdcreppart set (Shishi_tkt * tkt,
Shishi_asn1 enckdcreppart)

enckdcreppart: EncKDCRepPart to store in Ticket.

Set the EncKDCRepPart in the Ticket.

[Function]Shishi_asn1 shishi tkt kdcrep (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns KDC-REP information.

[Function]Shishi_asn1 shishi tkt encticketpart (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns EncTicketPart information.

[Function]void shishi tkt encticketpart set (Shishi_tkt * tkt, Shishi_asn1
encticketpart)

tkt: input variable with ticket info.

encticketpart: encticketpart to store in ticket.

Set the EncTicketPart in the Ticket.

[Function]Shishi_key * shishi tkt key (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns key extracted from enckdcreppart.

[Function]int shishi tkt key set (Shishi_tkt * tkt, Shishi_key * key)
tkt: input variable with ticket info.

key : key to store in ticket.

Set the key in the EncTicketPart.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 40

[Function]Shishi_tkt * shishi tkt2 (Shishi * handle, Shishi_asn1 ticket,
Shishi_asn1 enckdcreppart, Shishi_asn1 kdcrep)

handle: shishi handle as allocated by shishi_init().
ticket: input variable with ticket.
enckdcreppart: input variable with auxilliary ticket information.
kdcrep: input variable with KDC-REP ticket information.
Create a new ticket handle.
Returns new ticket handle, or NULL on error.

[Function]int shishi tkt (Shishi * handle, Shishi_tkt ** tkt)
handle: shishi handle as allocated by shishi_init().
tkt: output variable with newly allocated ticket.
Create a new ticket handle.
Returns SHISHI OK iff successful.

4.7 AS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The following illustrates the AS-REQ and AS-REP ASN.1 structures.
-- Request --

AS-REQ ::= KDC-REQ {10}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,

Chapter 4: Programming Manual 41

enc-authorization-data [10] EncryptedData {
AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey

| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,

additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
}

-- Reply --

AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncASRepPart ::= [APPLICATION 25] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

[Function]int shishi as (Shishi * handle, Shishi_as ** as)
handle: shishi handle as allocated by shishi_init().

as: holds pointer to newly allocate Shishi as structure.

Allocate a new AS exchange variable.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 42

[Function]Shishi_asn1 shishi as req (Shishi_as * as)
as: structure that holds information about AS exchange
Returns the generated AS-REQ packet from the AS exchange, or NULL if not yet set
or an error occured.

[Function]int shishi as req build (Shishi_as * as)
as: structure that holds information about AS exchange
Possibly remove unset fields (e.g., rtime).
Returns SHISHI OK iff successful.

[Function]void shishi as req set (Shishi_as * as, Shishi_asn1 asreq)
as: structure that holds information about AS exchange
asreq: asreq to store in AS.
Set the AS-REQ in the AP exchange.

[Function]int shishi as req der (Shishi_as * as, char * out, int * outlen)
as: structure that holds information about AS exchange
out: output array with der encoding of AS-REQ.
outlen: length of output array with der encoding of AS-REQ.
DER encode AS-REQ.
Returns SHISHI OK iff successful.

[Function]int shishi as req der set (Shishi_as * as, char * der, size_t
derlen)

as: structure that holds information about AS exchange
der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.
DER decode AS-REQ and set it AS exchange. If decoding fails, the AS-REQ in the
AS exchange remains.
Returns SHISHI OK.

[Function]Shishi_asn1 shishi as rep (Shishi_as * as)
as: structure that holds information about AS exchange
Returns the received AS-REP packet from the AS exchange, or NULL if not yet set
or an error occured.

[Function]int shishi as rep process (Shishi_as * as, Shishi_key * key,
const char * password)

as: structure that holds information about AS exchange
key : user’s key, used to encrypt the encrypted part of the AS-REP.
password: user’s password, used if key is NULL.
Process new AS-REP and set ticket. The key is used to decrypt the AP-REP. If both
key and password is NULL, the user is queried for it.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 43

[Function]int shishi as rep build (Shishi_as * as, Shishi_key * key)
as: structure that holds information about AS exchange
key : user’s key, used to encrypt the encrypted part of the AS-REP.
Build AS-REP.
Returns SHISHI OK iff successful.

[Function]int shishi as rep der (Shishi_as * as, char * out, int * outlen)
as: structure that holds information about AS exchange
out: output array with der encoding of AS-REP.
outlen: length of output array with der encoding of AS-REP.
DER encode AS-REP.
Returns SHISHI OK iff successful.

[Function]void shishi as rep set (Shishi_as * as, Shishi_asn1 asrep)
as: structure that holds information about AS exchange
asrep: asrep to store in AS.
Set the AS-REP in the AP exchange.

[Function]int shishi as rep der set (Shishi_as * as, char * der, size_t
derlen)

as: structure that holds information about AS exchange
der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.
DER decode AS-REP and set it AS exchange. If decoding fails, the AS-REP in the
AS exchange remains.
Returns SHISHI OK.

[Function]Shishi_asn1 shishi as krberror (Shishi_as * as)
as: structure that holds information about AS exchange
Returns the received KRB-ERROR packet from the AS exchange, or NULL if not yet
set or an error occured.

[Function]int shishi as krberror der (Shishi_as * as, char * out, int *
outlen)

as: structure that holds information about AS exchange
out: output array with der encoding of KRB-ERROR.
outlen: length of output array with der encoding of KRB-ERROR.
DER encode KRB-ERROR.
Returns SHISHI OK iff successful.

[Function]void shishi as krberror set (Shishi_as * as, Shishi_asn1
krberror)

as: structure that holds information about AS exchange
krberror: krberror to store in AS.
Set the KRB-ERROR in the AP exchange.

Chapter 4: Programming Manual 44

[Function]Shishi_tkt * shishi as tkt (Shishi_as * as)
as: structure that holds information about AS exchange
Returns the newly aquired tkt from the AS exchange, or NULL if not yet set or an
error occured.

[Function]void shishi as tkt set (Shishi_as * as, Shishi_tkt * tkt)
as: structure that holds information about AS exchange
tkt: tkt to store in AS.
Set the Tkt in the AP exchange.

[Function]int shishi as sendrecv (Shishi_as * as)
as: structure that holds information about AS exchange
Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentica-
tion, usually used to acquire a Ticket Granting Ticket.
Returns SHISHI OK iff successful.

4.8 TGS Functions

The Ticket Granting Service (TGS) is used to get subsequent tickets, authenticated by
other tickets (so called ticket granting tickets). The following illustrates the TGS-REQ and
TGS-REP ASN.1 structures.
-- Request --

TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,

Chapter 4: Programming Manual 45

addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey

| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,

additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
}

-- Reply --

TGS-REP ::= KDC-REP {13, EncTGSRepPart,
{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

[Function]int shishi tgs (Shishi * handle, Shishi_tgs ** tgs)
handle: shishi handle as allocated by shishi_init().
tgs: holds pointer to newly allocate Shishi tgs structure.

Chapter 4: Programming Manual 46

Allocate a new TGS exchange variable.
Returns SHISHI OK iff successful.

[Function]Shishi_tkt * shishi tgs tgtkt (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Returns the ticket-granting-ticket used in the TGS exchange, or NULL if not yet set
or an error occured.

[Function]void shishi tgs tgtkt set (Shishi_tgs * tgs, Shishi_tkt * tgtkt)
tgs: structure that holds information about TGS exchange
tgtkt: ticket granting ticket to store in TGS.
Set the Ticket in the AP exchange.

[Function]Shishi_ap * shishi tgs ap (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Returns the AP exchange (part of TGS-REQ) from the TGS exchange, or NULL if
not yet set or an error occured.

[Function]Shishi_asn1 shishi tgs req (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Returns the generated TGS-REQ from the TGS exchange, or NULL if not yet set or
an error occured.

[Function]int shishi tgs req build (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Checksum data in authenticator and add ticket and authenticator to TGS-REQ.
Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi tgs rep (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Returns the received TGS-REP from the TGS exchange, or NULL if not yet set or
an error occured.

[Function]int shishi tgs rep process (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Process new TGS-REP and set ticket. The key to decrypt the TGS-REP is taken
from the EncKDCRepPart of the TGS tgticket.
Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi tgs krberror (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Returns the received TGS-REP from the TGS exchange, or NULL if not yet set or
an error occured.

[Function]Shishi_tkt * shishi tgs tkt (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange
Returns the newly aquired ticket from the TGS exchange, or NULL if not yet set or
an error occured.

Chapter 4: Programming Manual 47

[Function]void shishi tgs tkt set (Shishi_tgs * tgs, Shishi_tkt * tkt)
tgs: structure that holds information about TGS exchange

tkt: ticket to store in TGS.

Set the Ticket in the AP exchange.

[Function]int shishi tgs sendrecv (Shishi_tgs * tgs)
tgs: structure that holds information about TGS exchange

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent au-
thentication, usually used to acquire server tickets.

Returns SHISHI OK iff successful.

[Function]int shishi tgs set server (Shishi_tgs * tgs, const char * server)
tgs: structure that holds information about TGS exchange

server: indicates the server to acquire ticket for.

Set the server in the TGS-REQ.

Returns SHISHI OK iff successful.

[Function]int shishi tgs set realm (Shishi_tgs * tgs, const char * realm)
tgs: structure that holds information about TGS exchange

realm: indicates the realm to acquire ticket for.

Set the server in the TGS-REQ.

Returns SHISHI OK iff successful.

[Function]int shishi tgs set realmserver (Shishi_tgs * tgs, const char *
realm, const char * server)

tgs: structure that holds information about TGS exchange

realm: indicates the realm to acquire ticket for.

server: indicates the server to acquire ticket for.

Set the realm and server in the TGS-REQ.

Returns SHISHI OK iff successful.

4.9 Ticket (ASN.1) Functions

[Function]int shishi ticket realm set (Shishi * handle, Shishi_asn1
ticket, const char * realm)

handle: shishi handle as allocated by shishi_init().

ticket: input variable with ticket info.

realm: input array with name of realm.

Set the realm field in the Ticket.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 48

[Function]int shishi ticket sname set (Shishi * handle, Shishi_asn1
ticket, Shishi_name_type name_type, char * sname[])

handle: shishi handle as allocated by shishi_init().

ticket: Ticket variable to set server name field in.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

Set the server name field in the Ticket.

Returns SHISHI OK iff successful.

[Function]int shishi ticket get enc part etype (Shishi * handle,
Shishi_asn1 ticket, int32_t * etype)

handle: shishi handle as allocated by shishi_init().

ticket: Ticket variable to get value from.

etype: output variable that holds the value.

Extract Ticket.enc-part.etype.

Returns SHISHI OK iff successful.

[Function]int shishi ticket set enc part (Shishi * handle, Shishi_asn1
ticket, int etype, int kvno, char * buf, size_t buflen)

handle: shishi handle as allocated by shishi_init().

ticket: Ticket to add enc-part field to.

etype: encryption type used to encrypt enc-part.

kvno: key version number.

buf : input array with encrypted enc-part.

buflen: size of input array with encrypted enc-part.

Set the encrypted enc-part field in the Ticket. The encrypted data is usually created
by calling shishi_encrypt() on the DER encoded enc-part. To save time, you may
want to use shishi_ticket_add_enc_part() instead, which calculates the encrypted
data and calls this function in one step.

Returns SHISHI OK iff successful.

[Function]int shishi ticket add enc part (Shishi * handle, Shishi_asn1
ticket, Shishi_key * key, Shishi_asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().

ticket: Ticket to add enc-part field to.

key : key used to encrypt enc-part.

encticketpart: EncTicketPart to add.

Encrypts DER encoded EncTicketPart using key and stores it in the Ticket.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 49

4.10 AS/TGS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The Ticket Granting Service (TGS) is used to get subsequent tickets using other tickets.
Protocol wise the procedures are very similar, which is the reason they are described to-
gether. The following illustrates the AS-REQ, TGS-REQ and AS-REP, TGS-REP ASN.1
structures. Most of the functions use the mnemonic “KDC” instead of either AS or TGS,
which means the function operates on both AS and TGS types. Only where the distinction
between AS and TGS is important are the AS and TGS names used. Remember, these
are low-level functions, and normal applications will likely be satisfied with the AS (see
Section 4.7 [AS Functions], page 40) and TGS (see Section 4.8 [TGS Functions], page 44)
interfaces, or the even more high-level Ticket Set (see Section 4.3 [Ticket Set Functions],
page 18) interface.

-- Request --

AS-REQ ::= KDC-REQ {10}
TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey

| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,

additional-tickets [11] SEQUENCE OF Ticket OPTIONAL

Chapter 4: Programming Manual 50

}

-- Reply --

AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}
TGS-REP ::= KDC-REP {13, EncTGSRepPart,

{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncASRepPart ::= [APPLICATION 25] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

[Function]int shishi as derive salt (Shishi * handle, Shishi_asn1 asreq,
Shishi_asn1 asrep, char * salt, size_t * saltlen)

handle: shishi handle as allocated by shishi_init().

asreq: input AS-REQ variable.

asrep: input AS-REP variable.

salt: output array with salt.

Chapter 4: Programming Manual 51

saltlen: on input, maximum size of output array with salt, on output, holds actual
size of output array with salt.
Derive the salt that should be used when deriving a key via shishi_string_
to_key() for an AS exchange. Currently this searches for PA-DATA of type
SHISHI PA PW SALT in the AS-REP and returns it if found, otherwise the salt is
derived from the client name and realm in AS-REQ.
Returns SHISHI OK iff successful.

[Function]int shishi kdc copy crealm (Shishi * handle, Shishi_asn1
kdcrep, Shishi_asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to read crealm from.
encticketpart: EncTicketPart to set crealm in.
Set crealm in KDC-REP to value in EncTicketPart.
Returns SHISHI OK if successful.

[Function]int shishi as check crealm (Shishi * handle, Shishi_asn1 asreq,
Shishi_asn1 asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare realm field in.
asrep: AS-REP to compare realm field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().
Returns SHISHI OK if successful, SHISHI REALM MISMATCH if the values differ,
or an error code.

[Function]int shishi kdc copy cname (Shishi * handle, Shishi_asn1
kdcrep, Shishi_asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REQ to read cname from.
encticketpart: EncTicketPart to set cname in.
Set cname in KDC-REP to value in EncTicketPart.
Returns SHISHI OK if successful.

[Function]int shishi as check cname (Shishi * handle, Shishi_asn1 asreq,
Shishi_asn1 asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare client name field in.
asrep: AS-REP to compare client name field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().
Returns SHISHI OK if successful, SHISHI CNAME MISMATCH if the values differ,
or an error code.

Chapter 4: Programming Manual 52

[Function]int shishi kdc copy nonce (Shishi * handle, Shishi_asn1 kdcreq,
Shishi_asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to read nonce from.
enckdcreppart: EncKDCRepPart to set nonce in.
Set nonce in EncKDCRepPart to value in KDC-REQ.
Returns SHISHI OK if successful.

[Function]int shishi kdc check nonce (Shishi * handle, Shishi_asn1
kdcreq, Shishi_asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to compare nonce field in.
enckdcreppart: Encrypted KDC-REP part to compare nonce field in.
Verify that KDC-REQ.req-body.nonce and EncKDCRepPart.nonce fields matches.
This is one of the steps that has to be performed when processing a KDC-REQ and
KDC-REP exchange.
Returns SHISHI OK if successful, SHISHI NONCE LENGTH MISMATCH if the
nonces have different lengths (usually indicates that buggy server truncated nonce to
4 bytes), SHISHI NONCE MISMATCH if the values differ, or an error code.

[Function]int shishi tgs process (Shishi * handle, Shishi_asn1 tgsreq,
Shishi_asn1 tgsrep, Shishi_asn1 oldenckdcreppart, Shishi_asn1 *
enckdcreppart)

handle: shishi handle as allocated by shishi_init().
tgsreq: input variable that holds the sent KDC-REQ.
tgsrep: input variable that holds the received KDC-REP.
oldenckdcreppart: input variable with EncKDCRepPart used in request.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process a TGS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the ticket used to construct the TGS request and calls shishi_kdc_process(),
which see.
Returns SHISHI OK iff the TGS client exchange was successful.

[Function]int shishi as process (Shishi * handle, Shishi_asn1 asreq,
Shishi_asn1 asrep, const char * string, Shishi_asn1 * enckdcreppart)

handle: shishi handle as allocated by shishi_init().
asreq: input variable that holds the sent KDC-REQ.
asrep: input variable that holds the received KDC-REP.
string : input variable with zero terminated password.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process an AS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the password and calls shishi_kdc_process(), which see.
Returns SHISHI OK iff the AS client exchange was successful.

Chapter 4: Programming Manual 53

[Function]int shishi kdc process (Shishi * handle, Shishi_asn1 kdcreq,
Shishi_asn1 kdcrep, Shishi_key * key, int keyusage, Shishi_asn1 *
enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: input variable that holds the sent KDC-REQ.
kdcrep: input variable that holds the received KDC-REP.
key : input array with key to decrypt encrypted part of KDC-REP with.
keyusage: kereros key usage value.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process a KDC client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. Use shishi_kdcrep_get_ticket() to extract the
ticket. This function verifies the various conditions that must hold if the response
is to be considered valid, specifically it compares nonces (shishi_check_nonces())
and if the exchange was a AS exchange, it also compares cname and crealm (shishi_
check_cname() and shishi_check_crealm()).
Usually the shishi_as_process() and shishi_tgs_process() functions should be
used instead, since they simplify the decryption key computation.
Returns SHISHI OK iff the KDC client exchange was successful.

[Function]Shishi_asn1 shishi asreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AS-REQ, populated with some default values.
Returns the AS-REQ or NULL on failure.

[Function]Shishi_asn1 shishi tgsreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new TGS-REQ, populated with some default values.
Returns the TGS-REQ or NULL on failure.

[Function]int shishi kdcreq print (Shishi * handle, FILE * fh, Shishi_asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcreq: KDC-REQ to print.
Print ASCII armored DER encoding of KDC-REQ to file.
Returns SHISHI OK iff successful.

[Function]int shishi kdcreq save (Shishi * handle, FILE * fh, Shishi_asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcreq: KDC-REQ to save.
Print DER encoding of KDC-REQ to file.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 54

[Function]int shishi kdcreq to file (Shishi * handle, Shishi_asn1 kdcreq,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write KDC-REQ to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI OK iff successful.

[Function]int shishi kdcreq parse (Shishi * handle, FILE * fh, Shishi_asn1
* kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcreq: output variable with newly allocated KDC-REQ.
Read ASCII armored DER encoded KDC-REQ from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi kdcreq read (Shishi * handle, FILE * fh, Shishi_asn1 *
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcreq: output variable with newly allocated KDC-REQ.
Read DER encoded KDC-REQ from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi kdcreq from file (Shishi * handle, Shishi_asn1 *
kdcreq, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
kdcreq: output variable with newly allocated KDC-REQ.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read KDC-REQ from file in specified TYPE.
Returns SHISHI OK iff successful.

[Function]int shishi kdcreq set cname (Shishi * handle, Shishi_asn1
kdcreq, Shishi_name_type name_type, const char * principal)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set client name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
principal: input array with principal name.
Set the client name field in the KDC-REQ.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 55

[Function]int shishi kdcreq set realm (Shishi * handle, Shishi_asn1
kdcreq, const char * realm)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set realm field in.

realm: input array with name of realm.

Set the realm field in the KDC-REQ.

Returns SHISHI OK iff successful.

[Function]int shishi kdcreq set sname (Shishi * handle, Shishi_asn1
kdcreq, Shishi_name_type name_type, const char * sname[])

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set server name field in.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

Set the server name field in the KDC-REQ.

Returns SHISHI OK iff successful.

[Function]int shishi kdcreq etype (Shishi * handle, Shishi_asn1 kdcreq,
int32_t * etype, int netype)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to get etype field from.

etype: output encryption type.

netype: element number to return.

th encryption type from KDC-REQ. The first etype is number 1.

Returns SHISHI OK iff etype successful set.

[Function]int shishi kdcreq set etype (Shishi * handle, Shishi_asn1
kdcreq, int32_t * etype, int netype)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.

etype: input array with encryption types.

netype: number of elements in input array with encryption types.

Set the list of supported or wanted encryption types in the request. The list should
be sorted in priority order.

Returns SHISHI OK iff successful.

[Function]int shishi kdcreq clear padata (Shishi * handle, Shishi_asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to remove PA-DATA from.

Remove the padata field from KDC-REQ.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 56

[Function]int shishi kdcreq add padata (Shishi * handle, Shishi_asn1
kdcreq, int padatatype, char * data, int datalen)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to add PA-DATA to.
padatatype: type of PA-DATA, see Shishi padata type.
data: input array with PA-DATA value.
datalen: size of input array with PA-DATA value.
Add new pre authentication data (PA-DATA) to KDC-REQ. This is used to pass
various information to KDC, such as in case of a SHISHI PA TGS REQ padatatype
the AP-REQ that authenticates the user to get the ticket. (But also see shishi_
kdcreq_add_padata_tgs() which takes an AP-REQ directly.)
Returns SHISHI OK iff successful.

[Function]int shishi kdcreq add padata tgs (Shishi * handle, Shishi_asn1
kdcreq, Shishi_asn1 apreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to add PA-DATA to.
apreq: AP-REQ to add as PA-DATA.
Add TGS pre-authentication data to KDC-REQ. The data is an AP-REQ that au-
thenticates the request. This functions simply DER encodes the AP-REQ and calls
shishi_kdcreq_add_padata() with a SHISHI PA TGS REQ padatatype.
Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi asrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AS-REP, populated with some default values.
Returns the AS-REP or NULL on failure.

[Function]Shishi_asn1 shishi tgsrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new TGS-REP, populated with some default values.
Returns the TGS-REP or NULL on failure.

[Function]int shishi kdcrep print (Shishi * handle, FILE * fh, Shishi_asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
kdcrep: KDC-REP to print.
Print ASCII armored DER encoding of KDC-REP to file.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep save (Shishi * handle, FILE * fh, Shishi_asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().

Chapter 4: Programming Manual 57

fh: file handle open for writing.
kdcrep: KDC-REP to save.
Print DER encoding of KDC-REP to file.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep to file (Shishi * handle, Shishi_asn1 kdcrep,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write KDC-REP to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep parse (Shishi * handle, FILE * fh, Shishi_asn1
* kdcrep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcrep: output variable with newly allocated KDC-REP.
Read ASCII armored DER encoded KDC-REP from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep read (Shishi * handle, FILE * fh, Shishi_asn1 *
kdcrep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcrep: output variable with newly allocated KDC-REP.
Read DER encoded KDC-REP from file and populate given variable.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep from file (Shishi * handle, Shishi_asn1 *
kdcrep, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
kdcrep: output variable with newly allocated KDC-REP.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read KDC-REP from file in specified TYPE.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep crealm set (Shishi * handle, Shishi_asn1
kdcrep, const char * crealm)

handle: shishi handle as allocated by shishi_init().
kdcrep: Kdcrep variable to set realm field in.

Chapter 4: Programming Manual 58

crealm: input array with name of realm.
Set the client realm field in the KDC-REP.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep cname set (Shishi * handle, Shishi_asn1
kdcrep, Shishi_name_type name_type, const char * cname[])

handle: shishi handle as allocated by shishi_init().
kdcrep: Kdcrep variable to set server name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
Set the server name field in the KDC-REP.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep client set (Shishi * handle, Shishi_asn1
kdcrep, const char * client)

handle: shishi handle as allocated by shishi_init().
kdcrep: Kdcrep variable to set server name field in.
client: zero-terminated string with principal name on RFC 1964 form.
Set the client name field in the KDC-REP.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep get enc part etype (Shishi * handle,
Shishi_asn1 kdcrep, int32_t * etype)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP variable to get value from.
etype: output variable that holds the value.
Extract KDC-REP.enc-part.etype.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep get ticket (Shishi * handle, Shishi_asn1
kdcrep, Shishi_asn1 * ticket)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP variable to get ticket from.
ticket: output variable to hold extracted ticket.
Extract ticket from KDC-REP.
Returns SHISHI OK iff successful.

[Function]int shishi kdcrep set ticket (Shishi * handle, Shishi_asn1
kdcrep, Shishi_asn1 ticket)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to add ticket field to.
ticket: input ticket to copy into KDC-REP ticket field.
Copy ticket into KDC-REP.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 59

[Function]int shishi kdcrep set enc part (Shishi * handle, Shishi_asn1
kdcrep, int etype, int kvno, char * buf, int buflen)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add enc-part field to.

etype: encryption type used to encrypt enc-part.

kvno: key version number.

buf : input array with encrypted enc-part.

buflen: size of input array with encrypted enc-part.

Set the encrypted enc-part field in the KDC-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded enc-part. To save time,
you may want to use shishi_kdcrep_add_enc_part() instead, which calculates the
encrypted data and calls this function in one step.

Returns SHISHI OK iff successful.

[Function]int shishi kdcrep add enc part (Shishi * handle, Shishi_asn1
kdcrep, Shishi_key * key, int keyusage, Shishi_asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add enc-part field to.

key : key used to encrypt enc-part.

keyusage: key usage to use, normally SHISHI KEYUSAGE ENCASREPPART,
SHISHI KEYUSAGE ENCTGSREPPART SESSION KEY or SHISHI KEYUSAGE ENCTGSREPPART AUTHENTICATOR KEY.

enckdcreppart: EncKDCRepPart to add.

Encrypts DER encoded EncKDCRepPart using key and stores it in the KDC-REP.

Returns SHISHI OK iff successful.

[Function]int shishi kdcrep clear padata (Shishi * handle, Shishi_asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to remove PA-DATA from.

Remove the padata field from KDC-REP.

Returns SHISHI OK iff successful.

[Function]int shishi enckdcreppart get key (Shishi * handle, Shishi_asn1
enckdcreppart, Shishi_key ** key)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

key : newly allocated encryption key handle.

Extract the key to use with the ticket sent in the KDC-REP associated with the
EndKDCRepPart input variable.

Returns SHISHI OK iff succesful.

Chapter 4: Programming Manual 60

[Function]int shishi enckdcreppart key set (Shishi * handle, Shishi_asn1
enckdcreppart, Shishi_key * key)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

key : key handle with information to store in enckdcreppart.

Set the EncKDCRepPart.key field to key type and value of supplied key.

Returns SHISHI OK iff succesful.

[Function]int shishi enckdcreppart nonce set (Shishi * handle,
Shishi_asn1 enckdcreppart, uint32_t nonce)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

nonce: nonce to set in EncKDCRepPart.

Set the EncKDCRepPart.nonce field.

Returns SHISHI OK iff succesful.

[Function]int shishi enckdcreppart flags set (Shishi * handle,
Shishi_asn1 enckdcreppart, int flags)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

flags: flags to set in EncKDCRepPart.

Set the EncKDCRepPart.flags field.

Returns SHISHI OK iff succesful.

[Function]int shishi enckdcreppart populate encticketpart (Shishi *
handle, Shishi_asn1 enckdcreppart, Shishi_asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.

encticketpart: input EncTicketPart variable.

Set the flags, authtime, starttime, endtime, renew-till and caddr fields of the EncK-
DCRepPart to the corresponding values in the EncTicketPart.

Returns SHISHI OK iff succesful.

[Function]int shishi enckdcreppart srealm set (Shishi * handle,
Shishi_asn1 enckdcreppart, const char * srealm)

handle: shishi handle as allocated by shishi_init().

enckdcreppart: EncKDCRepPart variable to set realm field in.

srealm: input array with name of realm.

Set the server realm field in the EncKDCRepPart.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 61

[Function]int shishi enckdcreppart sname set (Shishi * handle,
Shishi_asn1 enckdcreppart, Shishi_name_type name_type, char * sname[])

handle: shishi handle as allocated by shishi_init().
enckdcreppart: EncKDCRepPart variable to set server name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
Set the server name field in the EncKDCRepPart.
Returns SHISHI OK iff successful.

4.11 Authenticator Functions

An “Authenticator” is a ASN.1 structure that work as a proof that an entity owns a ticket.
It is usually embedded in the AP-REQ structure (see Section 4.4 [AP-REQ and AP-REP
Functions], page 22), and you most likely want to use an AP-REQ instead of a Authenticator
in normal applications. The following illustrates the Authenticator ASN.1 structure.
Authenticator ::= [APPLICATION 2] SEQUENCE {

authenticator-vno [0] INTEGER (5),
crealm [1] Realm,
cname [2] PrincipalName,
cksum [3] Checksum OPTIONAL,
cusec [4] Microseconds,
ctime [5] KerberosTime,
subkey [6] EncryptionKey OPTIONAL,
seq-number [7] UInt32 OPTIONAL,
authorization-data [8] AuthorizationData OPTIONAL

}

[Function]Shishi_asn1 shishi authenticator (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.
Returns the authenticator or NULL on failure.

[Function]int shishi authenticator print (Shishi * handle, FILE * fh,
Shishi_asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
authenticator: authenticator as allocated by shishi_authenticator().
Print ASCII armored DER encoding of authenticator to file.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator save (Shishi * handle, FILE * fh,
Shishi_asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.

Chapter 4: Programming Manual 62

authenticator: authenticator as allocated by shishi_authenticator().
Save DER encoding of authenticator to file.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator to file (Shishi * handle, Shishi_asn1
authenticator, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
authenticator: Authenticator to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write Authenticator to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator parse (Shishi * handle, FILE * fh,
Shishi_asn1 * authenticator)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
authenticator: output variable with newly allocated authenticator.
Read ASCII armored DER encoded authenticator from file and populate given au-
thenticator variable.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator read (Shishi * handle, FILE * fh,
Shishi_asn1 * authenticator)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
authenticator: output variable with newly allocated authenticator.
Read DER encoded authenticator from file and populate given authenticator variable.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator from file (Shishi * handle, Shishi_asn1
* authenticator, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
authenticator: output variable with newly allocated Authenticator.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read Authenticator from file in specified TYPE.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator set crealm (Shishi * handle,
Shishi_asn1 authenticator, const char * crealm)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
crealm: input array with realm.
Set realm field in authenticator to specified value.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 63

[Function]int shishi authenticator set cname (Shishi * handle,
Shishi_asn1 authenticator, Shishi_name_type name_type, const char *
cname[])

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

Set principal field in authenticator to specified value.

Returns SHISHI OK iff successful.

[Function]int shishi authenticator client set (Shishi * handle,
Shishi_asn1 authenticator, const char * client)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator to set client name field in.

client: zero-terminated string with principal name on RFC 1964 form.

Set the client name field in the Authenticator.

Returns SHISHI OK iff successful.

[Function]int shishi authenticator ctime set (Shishi * handle,
Shishi_asn1 authenticator, char * ctime)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

ctime: string with generalized time value to store in Authenticator.

Store client time in Authenticator.

Returns SHISHI OK iff successful.

[Function]int shishi authenticator cusec get (Shishi * handle,
Shishi_asn1 authenticator, int * cusec)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

cusec: output integer with client microseconds field.

Extract client microseconds field from Authenticator.

Returns SHISHI OK iff successful.

[Function]int shishi authenticator cusec set (Shishi * handle,
Shishi_asn1 authenticator, int cusec)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

cusec: client microseconds to set in authenticator, 0-999999.

Set the cusec field in the Authenticator.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 64

[Function]int shishi authenticator cksum (Shishi * handle, Shishi_asn1
authenticator, int32_t * cksumtype, char * cksum, size_t * cksumlen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
cksumtype: output checksum type.
cksum: output checksum data from authenticator.
cksumlen: on input, maximum size of output checksum data buffer, on output, actual
size of output checksum data buffer.
Read checksum value from authenticator.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator set cksum (Shishi * handle,
Shishi_asn1 authenticator, int32_t cksumtype, char * cksum, size_t
cksumlen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
cksumtype: input checksum type to store in authenticator.
cksum: input checksum data to store in authenticator.
cksumlen: size of input checksum data to store in authenticator.
Store checksum value in authenticator. A checksum is usually created by calling
shishi_checksum() on some application specific data using the key from the ticket
that is being used. To save time, you may want to use shishi_authenticator_
add_cksum() instead, which calculates the checksum and calls this function in one
step.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator add cksum (Shishi * handle,
Shishi_asn1 authenticator, Shishi_key * key, int keyusage, char *
data, int datalen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
key : key to to use for encryption.
keyusage: kerberos key usage value to use in encryption.
data: input array with data to calculate checksum on.
datalen: size of input array with data to calculate checksum on.
Calculate checksum for data and store it in the authenticator.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator clear authorizationdata (Shishi *
handle, Shishi_asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
authenticator: Authenticator as allocated by shishi_authenticator().
Remove the authorization-data field from Authenticator.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 65

[Function]int shishi authenticator add authorizationdata (Shishi *
handle, Shishi_asn1 authenticator, int adtype, char * addata, int
addatalen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
adtype: input authorization data type to add.
addata: input authorization data to add.
addatalen: size of input authorization data to add.
Add authorization data to authenticator.
Returns SHISHI OK iff successful.

[Function]int shishi authenticator authorizationdata (Shishi * handle,
Shishi_asn1 authenticator, int * adtype, char * addata, int *
addatalen, int nth)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
adtype: output authorization data type.
addata: output authorization data.
addatalen: on input, maximum size of output authorization data,
nth: element number of authorization-data to extract.
th authorization data from authenticator. The first field is 1.
Returns SHISHI OK iff successful.

4.12 Cryptographic Functions

Underneath the high-level functions described earlier, cryptographic operations are happen-
ing. If you need to access these cryptographic primitives directly, this section describes the
functions available.

Most cryptographic operations need keying material, and cryptographic keys have been
isolated into it’s own data structure Shishi_key. The following illustrates it’s contents,
but note that you cannot access it’s elements directly but must use the accessor functions
described below.
struct Shishi_key
{

int type; /* RFC 1510 encryption integer type */
char *value; /* Cryptographic key data */
int version; /* RFC 1510 ‘‘kvno’’ */

};

All functions that operate on this data structure are described now.

[Function]const char * shishi key principal (Shishi_key * key)
key : structure that holds key information
Returns the principal owning the key. (Not a copy of it, so don’t modify or deallocate
it.)

Chapter 4: Programming Manual 66

[Function]void shishi key principal set (Shishi_key * key, const char *
principal)

key : structure that holds key information

principal: string with new principal name.

Set the principal owning the key. The string is copied into the key, so you can dispose
of the variable immediately after calling this function.

[Function]const char * shishi key realm (Shishi_key * key)
key : structure that holds key information

Returns the realm for the principal owning the key. (Not a copy of it, so don’t modify
or deallocate it.)

[Function]void shishi key realm set (Shishi_key * key, const char * realm)
key : structure that holds key information

realm: string with new realm name.

Set the realm for the principal owning the key. The string is copied into the key, so
you can dispose of the variable immediately after calling this function.

[Function]int shishi key type (Shishi_key * key)
key : structure that holds key information

Returns the type of key as an integer as described in the standard.

[Function]void shishi key type set (Shishi_key * key, int32_t type)
key : structure that holds key information

type: type to set in key.

Set the type of key in key structure.

[Function]char * shishi key value (Shishi_key * key)
key : structure that holds key information

Returns the key value as a pointer which is valid throughout the lifetime of the key
structure.

[Function]void shishi key value set (Shishi_key * key, const char * value)
key : structure that holds key information

value: input array with key data.

Set the key value and length in key structure.

[Function]int shishi key version (Shishi_key * key)
key : structure that holds key information

Returns the version of key ("kvno").

[Function]void shishi key version set (Shishi_key * key, int version)
key : structure that holds key information

version: new version integer.

Set the version of key ("kvno") in key structure.

Chapter 4: Programming Manual 67

[Function]const char * shishi key name (Shishi_key * key)
key : structure that holds key information
Calls shishi cipher name for key type.
Return name of key.

[Function]size_t shishi key length (Shishi_key * key)
key : structure that holds key information
Calls shishi cipher keylen for key type.
Returns the length of the key value.

[Function]int shishi key (Shishi * handle, Shishi_key ** key)
handle: Shishi library handle create by shishi_init().
key : pointer to structure that will hold newly created key information
Create a new Key information structure.
Returns SHISHI MALLOC ERROR on memory allocation errors, and SHISHI OK
on success.

[Function]void shishi key done (Shishi_key ** key)
key : pointer to structure that holds key information.
Deallocates key information structure and set key handle to NULL.

[Function]void shishi key copy (Shishi_key * dstkey, Shishi_key * srckey)
dstkey : structure that holds destination key information
srckey : structure that holds source key information
Copies source key into existing allocated destination key.

[Function]int shishi key from value (Shishi * handle, int32_t type, char *
value, Shishi_key ** key)

handle: Shishi library handle create by shishi_init().
type: type of key.
value: input array with key value, or NULL.
key : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value. KEY
contains a newly allocated structure only if this function is successful.
Returns SHISHI MALLOC ERROR on memory allocation errors, and SHISHI OK
on success.

[Function]int shishi key from base64 (Shishi * handle, int32_t type, char
* value, Shishi_key ** key)

handle: Shishi library handle create by shishi_init().
type: type of key.
value: input string with base64 encoded key value, or NULL.
key : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value. KEY
contains a newly allocated structure only if this function is successful.

Chapter 4: Programming Manual 68

Returns SHISHI MALLOC ERROR on memory allocation errors,
SHISHI INVALID KEY if the base64 encoded key length doesn’t match
the key type, and SHISHI OK on success.

[Function]int shishi key random (Shishi * handle, int32_t type,
Shishi_key ** key)

handle: Shishi library handle create by shishi_init().

type: type of key.

key : pointer to structure that will hold newly created key information

Create a new Key information structure for the key type and some random data.
KEY contains a newly allocated structure only if this function is successful.

Returns SHISHI OK iff successful.

[Function]int shishi key from random (Shishi * handle, int32_t type,
char * random, size_t randomlen, Shishi_key ** outkey)

handle: Shishi library handle create by shishi_init().

type: type of key.

random: random data.

randomlen: length of random data.

outkey : pointer to structure that will hold newly created key information

Create a new Key information structure, and set the key type and key value using
shishi_random_to_key(). KEY contains a newly allocated structure only if this
function is successful.

Returns SHISHI MALLOC ERROR on memory allocation errors, and SHISHI OK
on success.

[Function]int shishi key from string (Shishi * handle, int32_t type, const
char * password, size_t passwordlen, const char * salt, size_t
saltlen, const char * parameter, Shishi_key ** outkey)

handle: Shishi library handle create by shishi_init().

type: type of key.

password: input array containing password.

passwordlen: length of input array containing password.

salt: input array containing salt.

saltlen: length of input array containing salt.

parameter: input array with opaque encryption type specific information.

outkey : pointer to structure that will hold newly created key information

Create a new Key information structure, and set the key type and key value using
shishi_string_to_key(). KEY contains a newly allocated structure only if this
function is successful.

Returns SHISHI MALLOC ERROR on memory allocation errors, and SHISHI OK
on success.

Chapter 4: Programming Manual 69

Applications that run uninteractively may need keying material. In these cases, the
keys are stored in a file, a file that is normally stored on the local host. The file should
be protected from unauthorized access. The file is in ASCII format and contains keys as
outputed by shishi_key_print(). All functions that handle these keys sets are described
now.

[Function]Shishi_key * shishi keys for serverrealm in file (Shishi *
handle, const char * filename, const char * server, const char * realm)

handle: Shishi library handle create by shishi_init().

filename: file to read keys from.

server: server name to get key for.

realm: realm of server to get key for.

Returns the key for specific server and realm, read from the indicated file, or NULL
if no key could be found or an error encountered.

[Function]Shishi_key * shishi keys for server in file (Shishi * handle,
const char * filename, const char * server)

handle: Shishi library handle create by shishi_init().

filename: file to read keys from.

server: server name to get key for.

Returns the key for specific server, read from the indicated file, or NULL if no key
could be found or an error encountered.

[Function]Shishi_key * shishi keys for localservicerealm in file (Shishi
* handle, const char * filename, const char * service, const char *
realm)

handle: Shishi library handle create by shishi_init().

filename: file to read keys from.

service: service to get key for.

realm: realm of server to get key for, or NULL for default realm.

Returns the key for the server "SERVICE/HOSTNAMEREALM" (where HOSTNAME
is the current system’s hostname), read from the default host keys file (see shishi_
hostkeys_default_file()), or NULL if no key could be found or an error encoun-
tered.

The previous functions require that the filename is known. For some applications,
servers, it makes sense to provide a system default. These key sets used by server ap-
plications are known as “hostkeys”. Here are the functions that operate on hostkeys (they
are mostly wrappers around generic key sets).

[Function]const char * shishi hostkeys default file (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Returns the default host key filename used in the library. (Not a copy of it, so don’t
modify or deallocate it.)

Chapter 4: Programming Manual 70

[Function]void shishi hostkeys default file set (Shishi * handle, const
char * hostkeysfile)

handle: Shishi library handle create by shishi_init().

hostkeysfile: string with new default hostkeys file name, or NULL to reset to default.

Set the default host key filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

[Function]Shishi_key * shishi hostkeys for server (Shishi * handle, const
char * server)

handle: Shishi library handle create by shishi_init().

server: server name to get key for

Returns the key for specific server, read from the default host keys file (see shishi_
hostkeys_default_file()), or NULL if no key could be found or an error encoun-
tered.

[Function]Shishi_key * shishi hostkeys for serverrealm (Shishi * handle,
const char * server, const char * realm)

handle: Shishi library handle create by shishi_init().

server: server name to get key for

realm: realm of server to get key for.

Returns the key for specific server and realm, read from the default host keys file (see
shishi_hostkeys_default_file()), or NULL if no key could be found or an error
encountered.

[Function]Shishi_key * shishi hostkeys for localservicerealm (Shishi *
handle, const char * service, const char * realm)

handle: Shishi library handle create by shishi_init().

service: service to get key for.

realm: realm of server to get key for, or NULL for default realm.

Returns the key for the server "SERVICE/HOSTNAMEREALM" (where HOSTNAME
is the current system’s hostname), read from the default host keys file (see shishi_
hostkeys_default_file()), or NULL if no key could be found or an error encoun-
tered.

[Function]Shishi_key * shishi hostkeys for localservice (Shishi * handle,
const char * service)

handle: Shishi library handle create by shishi_init().

service: service to get key for.

Returns the key for the server "SERVICE/HOSTNAME" (where HOSTNAME is
the current system’s hostname), read from the default host keys file (see shishi_
hostkeys_default_file()), or NULL if no key could be found or an error encoun-
tered.

After creating the key structure, it can be used to encrypt and decrypt data, calculate
checksum on data etc. All available functions are described now.

Chapter 4: Programming Manual 71

[Function]int shishi cipher supported p (int32_t type)
type: encryption type, see Shishi etype.

Return 0 iff cipher is unsupported.

[Function]const char * shishi cipher name (int32_t type)
type: encryption type, see Shishi etype.

Return name of encryption type, e.g. "des3-cbc-sha1-kd", as defined in the standards.

[Function]int shishi cipher blocksize (int32_t type)
type: encryption type, see Shishi etype.

Return block size for encryption type, as defined in the standards.

[Function]int shishi cipher minpadsize (int32_t type)
type: encryption type, see Shishi etype.

Return the minimum pad size for encryption type, as defined in the standards.

[Function]int shishi cipher confoundersize (int32_t type)
type: encryption type, see Shishi etype.

Returns the size of the confounder (random data) for encryption type, as defined in
the standards.

[Function]size_t shishi cipher keylen (int32_t type)
type: encryption type, see Shishi etype.

Return length of key used for the encryption type, as defined in the standards.

[Function]size_t shishi cipher randomlen (int32_t type)
type: encryption type, see Shishi etype.

Return length of random used for the encryption type, as defined in the standards.

[Function]int shishi cipher defaultcksumtype (int32_t type)
type: encryption type, see Shishi etype.

Return associated checksum mechanism for the encryption type, as defined in the
standards.

[Function]int shishi cipher parse (const char * cipher)
cipher: name of encryption type, e.g. "des3-cbc-sha1-kd".

Return encryption type corresponding to a string.

[Function]int shishi checksum supported p (int32_t type)
type: encryption type, see Shishi etype.

Return 0 iff checksum is unsupported.

[Function]const char * shishi checksum name (int32_t type)
type: encryption type, see Shishi etype.

Return name of checksum type, e.g. "hmac-sha1-96-aes256", as defined in the stan-
dards.

Chapter 4: Programming Manual 72

[Function]size_t shishi checksum cksumlen (int32_t type)
type: encryption type, see Shishi etype.
Return length of checksum used for the encryption type, as defined in the standards.

[Function]int shishi checksum parse (const char * checksum)
checksum: name of checksum type, e.g. "hmac-sha1-96-aes256".
Return checksum type corresponding to a string.

[Function]int shishi string to key (Shishi * handle, int32_t keytype, const
char * password, size_t passwordlen, const char * salt, size_t
saltlen, const char * parameter, Shishi_key * outkey)

handle: shishi handle as allocated by shishi_init().
keytype: cryptographic encryption type, see Shishi etype.
password: input array with password.
passwordlen: length of input array with password.
salt: input array with salt.
saltlen: length of input array with salt.
parameter: input array with opaque encryption type specific information.
outkey : allocated key handle that will contain new key.
Derive key from a string (password) and salt (commonly concatenation of realm and
principal) for specified key type, and set the type and value in the given key to the
computed values. The parameter value is specific for each keytype, and can be set if
the parameter information is not available.
Returns SHISHI OK iff successful.

[Function]int shishi random to key (Shishi * handle, int32_t keytype,
char * random, size_t randomlen, Shishi_key * outkey)

handle: shishi handle as allocated by shishi_init().
keytype: cryptographic encryption type, see Shishi etype.
random: input array with random data.
randomlen: length of input array with random data.
outkey : allocated key handle that will contain new key.
Derive key from random data for specified key type, and set the type and value in
the given key to the computed values.
Returns SHISHI OK iff successful.

[Function]int shishi checksum (Shishi * handle, Shishi_key * key, int
keyusage, int cksumtype, char * in, size_t inlen, char ** out, size_t *
outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
cksumtype: the checksum algorithm to use.

Chapter 4: Programming Manual 73

in: input array with data to integrity protect.
inlen: size of input array with data to integrity protect.
out: output array with integrity protected data.
outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.
Integrity protect data using key, possibly altered by supplied key usage. If key usage
is 0, no key derivation is used.
If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.
Returns SHISHI OK iff successful.

[Function]int shishi encrypt iv etype (Shishi * handle, Shishi_key * key,
int keyusage, int32_t etype, char * iv, size_t ivlen, char * in, size_t
inlen, char ** out, size_t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
etype: integer specifying what decryption method to use.
iv : input array with initialization vector.
ivlen: size of input array with initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with encrypted data.
outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.
Encrypts data using key, possibly altered by supplied key usage. If key usage is 0, no
key derivation is used.
If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.
Returns SHISHI OK iff successful.

[Function]int shishi encrypt iv (Shishi * handle, Shishi_key * key, int
keyusage, char * iv, size_t ivlen, char * in, size_t inlen, char **
out, size_t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with encrypted data.
outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.

Chapter 4: Programming Manual 74

Encrypts data using key, possibly altered by supplied key usage. If key usage is 0, no
key derivation is used.

If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.

Returns SHISHI OK iff successful.

[Function]int shishi encrypt (Shishi * handle, Shishi_key * key, int
keyusage, char * in, size_t inlen, char ** out, size_t * outlen)

handle: shishi handle as allocated by shishi_init().

key : key to encrypt with.

keyusage: integer specifying what this key is encrypting.

in: input array with data to encrypt.

inlen: size of input array with data to encrypt.

out: output array with encrypted data.

outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.

Encrypts data using key, possibly altered by supplied key usage. If key usage is 0, no
key derivation is used.

If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.

Returns SHISHI OK iff successful.

[Function]int shishi decrypt iv etype (Shishi * handle, Shishi_key * key,
int keyusage, int32_t etype, char * iv, size_t ivlen, char * in, size_t
inlen, char ** out, size_t * outlen)

handle: shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage: integer specifying what this key is decrypting.

etype: integer specifying what decryption method to use.

iv : input array with initialization vector.

ivlen: size of input array with initialization vector.

in: input array with data to decrypt.

inlen: size of input array with data to decrypt.

out: output array with decrypted data.

outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.

Decrypts data using key, possibly altered by supplied key usage. If key usage is 0, no
key derivation is used.

If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 75

[Function]int shishi decrypt iv (Shishi * handle, Shishi_key * key, int
keyusage, char * iv, size_t ivlen, char * in, size_t inlen, char **
out, size_t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
iv : input array with initialization vector.
ivlen: size of input array with initialization vector.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with decrypted data.
outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.
Decrypts data using key, possibly altered by supplied key usage. If key usage is 0, no
key derivation is used.
If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.
Returns SHISHI OK iff successful.

[Function]int shishi decrypt (Shishi * handle, Shishi_key * key, int
keyusage, char * in, size_t inlen, char ** out, size_t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with decrypted data.
outlen: on input, holds maximum size of output array, on output, holds actual size
of output array.
Decrypts data using key, possibly altered by supplied key usage. If key usage is 0, no
key derivation is used.
If OUT is NULL, this functions only set OUTLEN. This usage may be used by the
caller to allocate the proper buffer size.
Returns SHISHI OK iff successful.

[Function]int shishi randomize (Shishi * handle, char * data, size_t
datalen)

handle: shishi handle as allocated by shishi_init().
data: output array to be filled with random data.
datalen: size of output array.
Store cryptographically strong random data of given size in the provided buffer.
Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 76

[Function]int shishi n fold (Shishi * handle, char * in, size_t inlen, char *
out, size_t outlen)

handle: shishi handle as allocated by shishi_init().

in: input array with data to decrypt.

inlen: size of input array with data to decrypt ("M").

out: output array with decrypted data.

outlen: size of output array ("N").

Fold data into a fixed length output array, with the intent to give each input bit
approximately equal weight in determining the value of each output bit.

The algorithm is from "A Better Key Schedule For DES-like Ciphers" by Uri Blumen-
thal and Steven M. Bellovin, <URL:http://www.research.att.com/~smb/papers/ides.pdf>,
although the sample vectors provided by the paper are incorrect.

Returns SHISHI OK iff successful.

[Function]int shishi dr (Shishi * handle, Shishi_key * key, char * constant,
size_t constantlen, char * derivedrandom, size_t derivedrandomlen)

handle: shishi handle as allocated by shishi_init().

key : input array with cryptographic key to use.

constant: input array with the constant string.

constantlen: size of input array with the constant string.

derivedrandom: output array with derived random data.

derivedrandomlen: size of output array with derived random data.

Derive "random" data from a key and a constant thusly: DR(KEY, CONSTANT) =
TRUNCATE(DERIVEDRANDOMLEN, SHISHI ENCRYPT(KEY, CONSTANT)).

Returns SHISHI OK iff successful.

[Function]int shishi dk (Shishi * handle, Shishi_key * key, char * constant,
int constantlen, Shishi_key * derivedkey)

handle: shishi handle as allocated by shishi_init().

key : input cryptographic key to use.

constant: input array with the constant string.

constantlen: size of input array with the constant string.

derivedkey : pointer to derived key (allocated by caller).

DK(KEY, CONSTANT) = SHISHI RANDOM-TO-KEY(SHISHI DR(KEY, CON-
STANT)).

Returns SHISHI OK iff successful.

Chapter 4: Programming Manual 77

4.13 Utility Functions

[Function]char * shishi realm default guess (void)
Guesses a realm based on getdomainname() (which really is NIS/YP domain, but if
it is set it might be a good guess), or if it fails, based on gethostname(), or if it fails,
the string "could-not-guess-default-realm". Note that the hostname is not trimmed
off of the data returned by gethostname() to get the domain name and use that as
the realm.
Returns guessed realm for host as a string that has to be deallocated with free() by
the caller.

[Function]const char * shishi realm default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Returns the default realm used in the library. (Not a copy of it, so don’t modify or
deallocate it.)

[Function]void shishi realm default set (Shishi * handle, const char *
realm)

handle: Shishi library handle create by shishi_init().
realm: string with new default realm name, or NULL to reset to default.
Set the default realm used in the library. The string is copied into the library, so you
can dispose of the variable immediately after calling this function.

[Function]char * shishi principal default guess (void)
Guesses a principal using getpwuid(getuid)), or if it fails, the string "user".
Returns guessed default principal for user as a string that has to be deallocated with
free() by the caller.

[Function]const char * shishi principal default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Returns the default principal name used in the library. (Not a copy of it, so don’t
modify or deallocate it.)

[Function]void shishi principal default set (Shishi * handle, const char *
principal)

handle: Shishi library handle create by shishi_init().
principal: string with new default principal name, or NULL to reset to default.
Set the default realm used in the library. The string is copied into the library, so you
can dispose of the variable immediately after calling this function.

[Function]int shishi principal name set (Shishi * handle, Shishi_asn1
namenode, const char * namefield, Shishi_name_type name_type, const
char * name[])

handle: shishi handle as allocated by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.

Chapter 4: Programming Manual 78

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
Set the given principal name field to given name.
Returns SHISHI OK iff successful.

[Function]int shishi principal set (Shishi * handle, Shishi_asn1 namenode,
const char * namefield, const char * name)

handle: shishi handle as allocated by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.
name: zero-terminated string with principal name on RFC 1964 form.
Set principal name field in ASN.1 structure to given name.
Returns SHISHI OK iff successful.

4.14 Error Handling

Most functions in ‘Libshishi’ are returning an error if they fail. For this reason, the applica-
tion should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

4.14.1 Error values

Errors are returned as an int. Except for the SHISHI OK case, an application should
always use the constants instead of their numeric value. Applications are encouraged to use
the constants even for SHISHI OK as it improves readability. Possible values are:

SHISHI_OK
This value indicates success. The value of this error is guaranteed to always be
0 so you may use it in boolean constructs.

SHISHI_MALLOC_ERROR
Memory allocation error in shishi library.

SHISHI_BASE64_ERROR
Base64 encoding or decoding failed. This usually means the data is corrupt.

SHISHI_FOPEN_ERROR
Could not open file.

SHISHI_FCLOSE_ERROR
Could not close file.

SHISHI_CRYPTO_INTERNAL_ERROR
Internal error in low-level crypto routines.

SHISHI_NONCE_MISMATCH
Replay protection value (nonce) differ between request and reply.

Chapter 4: Programming Manual 79

SHISHI_REALM_MISMATCH
Client realm value differ between request and reply.

SHISHI_CNAME_MISMATCH
Client name value differ between request and reply.

SHISHI_ASN1_ERROR
Error in ASN.1 data, probably due to corrupt data.

SHISHI_CRYPTO_ERROR
Low-level cryptographic primitive failed. This usually indicates bad password
or data corruption.

SHISHI_KDC_TIMEOUT
Timedout talking to KDC. This usually indicates a network or KDC address
problem.

SHISHI_KDC_NOT_KNOWN_FOR_REALM
No KDC for realm known.

SHISHI_SOCKET_ERROR
The system call socket() failed. This usually indicates that your system does
not support the socket type.

SHISHI_BIND_ERROR
The system call bind() failed. This usually indicates insufficient permissions.

SHISHI_SENDTO_ERROR
The system call sendto() failed.

SHISHI_CLOSE_ERROR
The system call close() failed.

SHISHI_GOT_KRBERROR
Server replied with an error message to request.

SHISHI_INVALID_TKTS
Ticketset not initialized. This usually indicates an internal application error.

SHISHI_TICKET_BAD_KEYTYPE
Keytype used to encrypt ticket doesn’t match provided key. This usually indi-
cates an internal application error.

SHISHI_APREQ_DECRYPT_FAILED
Could not decrypt AP-REQ using provided key. This usually indicates an
internal application error.

SHISHI_TICKET_DECRYPT_FAILED
Could not decrypt Ticket using provided key. This usually indicates an internal
application error.

4.14.2 Error strings

[Function]const char * shishi strerror (int err)
err: shishi error code

Chapter 4: Programming Manual 80

Returns a pointer to a statically allocated string containing a description of the error
with the error value err. This string can be used to output a diagnostic message to
the user.

4.15 Examples

This section will be extended to contain walk-throughs of example code that demonstrate
how ‘Shishi’ is used to write your own applications that support Kerberos 5. The rest of
the current section consists of some crude hints for the example client/server applications
that is part of Shishi, taken from an email but saved here for lack of a better place to put
it.

There are two programs: ’client’ and ’server’ in src/.
The client output an AP-REQ, waits for an AP-REP, and then simply reads data from

stdin.
The server waits for an AP-REQ, parses it and prints an AP-REP, and then read data

from stdin.
Both programs accept a Kerberos server name as the first command line argument. Your

KDC must know this server, since the client tries to get a ticket for it (first it gets a ticket
granting ticket for the default username), and you must write the key for the server into
/usr/local/etc/shishi.keys on the Shishi format, e.g.:

-----BEGIN SHISHI KEY-----
Keytype: 16 (des3-cbc-sha1-kd)
Principal: sample/latte.josefsson.org
Realm: JOSEFSSON.ORG

8W0VrQQBpxlACPQEqN91EHxbvFFo2ltt
-----END SHISHI KEY-----

You must extract the proper encryption key from the KDC in some way. (This part will
be easier when Shishi include a KDC, a basic one isn’t far away, give me a week or to.)

The intention is that the data read, after the authentication phase, should be protected
using KRB SAFE (see RFC) but I haven’t added this yet.

4.16 Generic Security Service

As an alternative to the native Shishi programming API, it is possible to program Shishi
through the Generic Security Services (GSS) API. The advantage of using GSS-API in your
security application, instead of the native Shishi API, is that it will be easier to port your
application between different Kerberos 5 implementations, and even beyond Kerberos 5
to different security systems, that support GSS-API. In the free software world, however,
the only widely used security system that supports GSS-API is Kerberos 5, so the last
advantage is somewhat academic. But if you are porting applications using GSS-API for
other Kerberos 5 implementations, or want a more mature and stable API than the native
Shishi API, you may find using Shishi’s GSS-API interface compelling. Note that GSS-API
only offer basic services, for more advanced uses you must use the native API.

Chapter 4: Programming Manual 81

Since the GSS is not specific to Shishi, it is distributed independently from Shishi.
Further information on the GSS project can be found at http://josefsson.org/gss/.

Chapter 5: Acknowledgements 82

5 Acknowledgements

Shishi uses Libtasn1 by Fabio Fiorina, Libnettle by Niels Mller, Libgcrypt and Libgpg-error
by Werner Koch, Libidn by Simon Josefsson, cvs2cl by Karl Fogel, and gdoc by Michael
Zucchi.

Several GNU packages simplified development considerably, those packages include Au-
toconf, Automake, Libtool, Gnulib, Gettext, Indent, CVS, Texinfo, Help2man and Emacs.

Several people reported bugs, sent patches or suggested improvements, see the file
THANKS.

Appendix A: Copying This Manual 83

Appendix A Copying This Manual

A.1 GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix A: Copying This Manual 84

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

Appendix A: Copying This Manual 85

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,

Appendix A: Copying This Manual 86

create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

Appendix A: Copying This Manual 87

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or

Appendix A: Copying This Manual 88

distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 89

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix B: GNU GENERAL PUBLIC LICENSE 90

Appendix B GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

B.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Appendix B: GNU GENERAL PUBLIC LICENSE 91

B.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

Appendix B: GNU GENERAL PUBLIC LICENSE 92

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

Appendix B: GNU GENERAL PUBLIC LICENSE 93

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

Appendix B: GNU GENERAL PUBLIC LICENSE 94

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix B: GNU GENERAL PUBLIC LICENSE 95

B.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Concept Index 96

Concept Index

3
3DES . 4

A
AES . 4
Application Programming Interface (API) 14

C
Compiling your application 15

D
Debian . 6
DES . 4

E
End-user Shishi usage . 8
Error Handling . 78
Examples . 80

F
FDL, GNU Free Documentation License 83
FreeBSD . 6

G
Generic Security Service (GSS) 80
GPL, General Public License 90

N
NetBSD . 6

O
OpenBSD . 6

R
RedHat . 6
Reporting Bugs . 7

S
Solaris . 6
SuSE . 6
SuSE Linux . 6

T
Tru64 . 6

Function and Data Index 97

Function and Data Index

shishi . 15
shishi_ap . 23
shishi_ap_authenticator 25
shishi_ap_authenticator_cksumdata 25
shishi_ap_authenticator_cksumdata_set 25
shishi_ap_authenticator_set 25
shishi_ap_encapreppart . 28
shishi_ap_encapreppart_set 28
shishi_ap_rep . 27
shishi_ap_rep_asn1 . 27
shishi_ap_rep_build . 27
shishi_ap_rep_der . 27
shishi_ap_rep_der_set . 27
shishi_ap_rep_set . 27
shishi_ap_rep_verify . 27
shishi_ap_rep_verify_asn1 28
shishi_ap_rep_verify_der 28
shishi_ap_req . 25
shishi_ap_req_asn1 . 26
shishi_ap_req_build . 26
shishi_ap_req_der . 26
shishi_ap_req_der_new . 26
shishi_ap_req_der_set . 26
shishi_ap_req_process . 26
shishi_ap_req_set . 25
shishi_ap_set_tktoptions 23
shishi_ap_set_tktoptionsasn1usage 23
shishi_ap_set_tktoptionsdata 23
shishi_ap_tkt . 24
shishi_ap_tkt_set . 25
shishi_ap_tktoptions . 24
shishi_ap_tktoptionsasn1usage 24
shishi_ap_tktoptionsdata 24
shishi_aprep . 30
shishi_aprep_from_file . 32
shishi_aprep_get_enc_part_etype 32
shishi_aprep_parse . 31
shishi_aprep_print . 31
shishi_aprep_read . 31
shishi_aprep_save . 31
shishi_aprep_to_file . 31
shishi_apreq . 28
shishi_apreq_add_authenticator 30
shishi_apreq_from_file . 29
shishi_apreq_get_authenticator_etype 30
shishi_apreq_get_ticket 30
shishi_apreq_parse . 29
shishi_apreq_print . 28
shishi_apreq_read . 29
shishi_apreq_save . 28
shishi_apreq_set_authenticator 29
shishi_apreq_set_ticket 30
shishi_apreq_to_file . 29
shishi_as . 41
shishi_as_check_cname . 51

shishi_as_check_crealm . 51
shishi_as_derive_salt . 50
shishi_as_krberror . 43
shishi_as_krberror_der . 43
shishi_as_krberror_set . 43
shishi_as_process . 52
shishi_as_rep . 42
shishi_as_rep_build . 43
shishi_as_rep_der . 43
shishi_as_rep_der_set . 43
shishi_as_rep_process . 42
shishi_as_rep_set . 43
shishi_as_req . 42
shishi_as_req_build . 42
shishi_as_req_der . 42
shishi_as_req_der_set . 42
shishi_as_req_set . 42
shishi_as_sendrecv . 44
shishi_as_tkt . 44
shishi_as_tkt_set . 44
shishi_asrep . 56
shishi_asreq . 53
shishi_authenticator . 61
shishi_authenticator_add_authorizationdata

. 65
shishi_authenticator_add_cksum 64
shishi_authenticator_authorizationdata . . . 65
shishi_authenticator_cksum 64
shishi_authenticator_clear_

authorizationdata . 64
shishi_authenticator_client_set 63
shishi_authenticator_ctime_set 63
shishi_authenticator_cusec_get 63
shishi_authenticator_cusec_set 63
shishi_authenticator_from_file 62
shishi_authenticator_parse 62
shishi_authenticator_print 61
shishi_authenticator_read 62
shishi_authenticator_save 61
shishi_authenticator_set_cksum 64
shishi_authenticator_set_cname 63
shishi_authenticator_set_crealm 62
shishi_authenticator_to_file 62
shishi_cfg . 17
shishi_cfg_clientkdcetype 17
shishi_cfg_clientkdcetype_set 18
shishi_cfg_default_systemfile 17
shishi_cfg_default_userdirectory 17
shishi_cfg_default_userfile 17
shishi_cfg_from_file . 17
shishi_cfg_print . 17
shishi_check_version . 14
shishi_checksum . 72
shishi_checksum_cksumlen 72
shishi_checksum_name . 71

Function and Data Index 98

shishi_checksum_parse . 72
shishi_checksum_supported_p 71
shishi_cipher_blocksize 71
shishi_cipher_confoundersize 71
shishi_cipher_defaultcksumtype 71
shishi_cipher_keylen . 71
shishi_cipher_minpadsize 71
shishi_cipher_name . 71
shishi_cipher_parse . 71
shishi_cipher_randomlen 71
shishi_cipher_supported_p 71
shishi_decrypt . 75
shishi_decrypt_iv . 75
shishi_decrypt_iv_etype 74
shishi_dk . 76
shishi_done . 16
shishi_dr . 76
shishi_encapreppart_ctime_set 33
shishi_encapreppart_cusec_get 34
shishi_encapreppart_cusec_set 34
shishi_encapreppart_from_file 33
shishi_encapreppart_get_key 33
shishi_encapreppart_parse 33
shishi_encapreppart_print 32
shishi_encapreppart_read 33
shishi_encapreppart_save 32
shishi_encapreppart_seqnumber_get 34
shishi_encapreppart_to_file 32
shishi_enckdcreppart_flags_set 60
shishi_enckdcreppart_get_key 59
shishi_enckdcreppart_key_set 60
shishi_enckdcreppart_nonce_set 60
shishi_enckdcreppart_populate_encticketpart

. 60
shishi_enckdcreppart_sname_set 61
shishi_enckdcreppart_srealm_set 60
shishi_encrypt . 74
shishi_encrypt_iv . 73
shishi_encrypt_iv_etype 73
shishi_hostkeys_default_file 69
shishi_hostkeys_default_file_set 70
shishi_hostkeys_for_localservice 70
shishi_hostkeys_for_localservicerealm 70
shishi_hostkeys_for_server 70
shishi_hostkeys_for_serverrealm 70
shishi_init . 16
shishi_init_server . 16
shishi_init_server_with_paths 16
shishi_init_with_paths . 16
shishi_kdc_check_nonce . 52
shishi_kdc_copy_cname . 51
shishi_kdc_copy_crealm . 51
shishi_kdc_copy_nonce . 52
shishi_kdc_process . 53
shishi_kdcrep_add_enc_part 59
shishi_kdcrep_clear_padata 59
shishi_kdcrep_client_set 58
shishi_kdcrep_cname_set 58

shishi_kdcrep_crealm_set 57
shishi_kdcrep_from_file 57
shishi_kdcrep_get_enc_part_etype 58
shishi_kdcrep_get_ticket 58
shishi_kdcrep_parse . 57
shishi_kdcrep_print . 56
shishi_kdcrep_read . 57
shishi_kdcrep_save . 56
shishi_kdcrep_set_enc_part 59
shishi_kdcrep_set_ticket 58
shishi_kdcrep_to_file . 57
shishi_kdcreq_add_padata 56
shishi_kdcreq_add_padata_tgs 56
shishi_kdcreq_clear_padata 55
shishi_kdcreq_etype . 55
shishi_kdcreq_from_file 54
shishi_kdcreq_parse . 54
shishi_kdcreq_print . 53
shishi_kdcreq_read . 54
shishi_kdcreq_save . 53
shishi_kdcreq_set_cname 54
shishi_kdcreq_set_etype 55
shishi_kdcreq_set_realm 55
shishi_kdcreq_set_sname 55
shishi_kdcreq_to_file . 54
shishi_key . 67
shishi_key_copy . 67
shishi_key_done . 67
shishi_key_from_base64 . 67
shishi_key_from_random . 68
shishi_key_from_string . 68
shishi_key_from_value . 67
shishi_key_length . 67
shishi_key_name . 67
shishi_key_principal . 65
shishi_key_principal_set 66
shishi_key_random . 68
shishi_key_realm . 66
shishi_key_realm_set . 66
shishi_key_type . 66
shishi_key_type_set . 66
shishi_key_value . 66
shishi_key_value_set . 66
shishi_key_version . 66
shishi_key_version_set . 66
shishi_keys_for_localservicerealm_in_file

. 69
shishi_keys_for_server_in_file 69
shishi_keys_for_serverrealm_in_file 69
shishi_n_fold . 76
shishi_principal_default 77
shishi_principal_default_guess 77
shishi_principal_default_set 77
shishi_principal_name_set 77
shishi_principal_set . 78
shishi_random_to_key . 72
shishi_randomize . 75
shishi_realm_default . 77

Function and Data Index 99

shishi_realm_default_guess 77
shishi_realm_default_set 77
shishi_safe . 35
shishi_safe_build . 38
shishi_safe_cksum . 37
shishi_safe_from_file . 37
shishi_safe_key . 35
shishi_safe_key_set . 35
shishi_safe_parse . 36
shishi_safe_print . 36
shishi_safe_read . 36
shishi_safe_safe . 35
shishi_safe_safe_der . 35
shishi_safe_safe_der_set 35
shishi_safe_safe_set . 35
shishi_safe_save . 36
shishi_safe_set_cksum . 37
shishi_safe_set_user_data 38
shishi_safe_to_file . 36
shishi_safe_user_data . 37
shishi_safe_verify . 38
shishi_strerror . 79
shishi_string_to_key . 72
shishi_tgs . 45
shishi_tgs_ap . 46
shishi_tgs_krberror . 46
shishi_tgs_process . 52
shishi_tgs_rep . 46
shishi_tgs_rep_process . 46
shishi_tgs_req . 46
shishi_tgs_req_build . 46
shishi_tgs_sendrecv . 47
shishi_tgs_set_realm . 47
shishi_tgs_set_realmserver 47
shishi_tgs_set_server . 47
shishi_tgs_tgtkt . 46
shishi_tgs_tgtkt_set . 46
shishi_tgs_tkt . 46
shishi_tgs_tkt_set . 47
shishi_tgsrep . 56
shishi_tgsreq . 53

shishi_ticket_add_enc_part 48
shishi_ticket_get_enc_part_etype 48
shishi_ticket_realm_set 47
shishi_ticket_set_enc_part 48
shishi_ticket_sname_set 48
shishi_tkt . 40
shishi_tkt_client . 39
shishi_tkt_enckdcreppart 39
shishi_tkt_enckdcreppart_set 39
shishi_tkt_encticketpart 39
shishi_tkt_encticketpart_set 39
shishi_tkt_kdcrep . 39
shishi_tkt_key . 39
shishi_tkt_key_set . 39
shishi_tkt_match_p . 20
shishi_tkt_ticket . 39
shishi_tkt2 . 40
shishi_tkts . 18
shishi_tkts_add . 19
shishi_tkts_default . 18
shishi_tkts_default_file 18
shishi_tkts_default_file_guess 18
shishi_tkts_default_file_set 18
shishi_tkts_done . 19
shishi_tkts_expire . 20
shishi_tkts_find . 21
shishi_tkts_find_for_clientserver 21
shishi_tkts_find_for_server 21
shishi_tkts_from_file . 19
shishi_tkts_get . 22
shishi_tkts_get_for_clientserver 22
shishi_tkts_get_for_server 22
shishi_tkts_new . 19
shishi_tkts_nth . 19
shishi_tkts_print . 20
shishi_tkts_print_for_service 20
shishi_tkts_read . 19
shishi_tkts_remove . 19
shishi_tkts_size . 19
shishi_tkts_to_file . 20
shishi_tkts_write . 20

iii

Short Contents

1 Introduction. 1

2 User Manual . 8

3 Administration Manual . 13

4 Programming Manual . 14

5 Acknowledgements . 82

A Copying This Manual . 83

B GNU GENERAL PUBLIC LICENSE. 90

Concept Index . 96

Function and Data Index . 97

iv

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features and Status . 1
1.3 Overview . 2
1.4 Cryptographic Overview . 4
1.5 Supported Platforms . 6
1.6 Bug Reports . 6

2 User Manual . 8

3 Administration Manual 13

4 Programming Manual . 14
4.1 Preparation . 14

4.1.1 Header. 14
4.1.2 Initialization . 14
4.1.3 Version Check . 14
4.1.4 Building the source . 15

4.2 Initialization Functions . 15
4.3 Ticket Set Functions. 18
4.4 AP-REQ and AP-REP Functions . 22
4.5 SAFE and PRIV Functions . 34
4.6 Ticket Functions . 38
4.7 AS Functions . 40
4.8 TGS Functions . 44
4.9 Ticket (ASN.1) Functions . 47
4.10 AS/TGS Functions . 48
4.11 Authenticator Functions . 61
4.12 Cryptographic Functions . 65
4.13 Utility Functions . 76
4.14 Error Handling. 78

4.14.1 Error values . 78
4.14.2 Error strings . 79

4.15 Examples . 80
4.16 Generic Security Service . 80

5 Acknowledgements . 82

Appendix A Copying This Manual 83
A.1 GNU Free Documentation License . 83

A.1.1 ADDENDUM: How to use this License for your
documents . 89

v

Appendix B GNU GENERAL PUBLIC
LICENSE . 90
B.1 Preamble . 90
B.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 90
B.3 How to Apply These Terms to Your New Programs 95

Concept Index . 96

Function and Data Index . 97

	Introduction
	Getting Started
	Features and Status
	Overview
	Cryptographic Overview
	Supported Platforms
	Bug Reports

	User Manual
	Administration Manual
	Programming Manual
	Preparation
	Header
	Initialization
	Version Check
	Building the source

	Initialization Functions
	Ticket Set Functions
	AP-REQ and AP-REP Functions
	SAFE and PRIV Functions
	Ticket Functions
	AS Functions
	TGS Functions
	Ticket (ASN.1) Functions
	AS/TGS Functions
	Authenticator Functions
	Cryptographic Functions
	Utility Functions
	Error Handling
	Error values
	Error strings

	Examples
	Generic Security Service

	Acknowledgements
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Concept Index
	Function and Data Index
	Introduction
	Getting Started
	Features and Status
	Overview
	Cryptographic Overview
	Supported Platforms
	Bug Reports
	User Manual
	Administration Manual
	Programming Manual
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Initialization Functions
	Ticket Set Functions
	AP-REQ and AP-REP Functions
	SAFE and PRIV Functions

	Ticket Functions
	AS Functions
	TGS Functions
	Ticket (ASN.1) Functions
	AS/TGS Functions
	Authenticator Functions
	Cryptographic Functions
	Utility Functions
	Error Handling
	Error values
	Error strings
	Examples
	Generic Security Service

	Acknowledgements
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Concept Index
	Function and Data Index

